ORIGINAL PAPER

Cluster Modeling of Network-Forming Amorphization Pathways in As_xS_{100-x} Arsenicals (50 $\leq x \leq$ 57) Diven by Nanomilling

Oleh Shpotyuk^{1,2} • Malgorzata Hyla¹ · Yaroslav Shpotyuk^{3,4} · Valentina Balitska⁵ · Andrzej Kozdras⁶ · Vitaliy Boyko²

Received: 26 December 2020 / Accepted: 22 April 2021 / Published online: 8 May 2021 © The Author(s) 2021

Abstract

Complete hierarchy of network amorphization scenarios initiated in As_xS_{100-x} nanoarsenicals within As_4S_4 - As_4S_3 cut-Sect. ($50 \le x \le 57$) is reconstructed employing materials-computational approach based on ab-initio quantum-chemical modeling code (CINCA). Under nanostructurization due to high-energy mechanical milling, the inter-crystalline transformations to nanoscopic β - As_4S_4 phase accompanied by appearance of covalent-network amorphous matrix are activated. General amorphization trend under nanomilling obeys tending from molecular cage-like structures to optimally-constrained covalent-bonded networks compositionally invariant with parent arsenical. The contribution of amorphization paths in nanoarsenicals is defined by their chemistry with higher molecular-to-network barriers proper to As_4S_3 -rich alloys. The generated amorphous phase is intrinsically decomposed, possessing double- T_g relaxation due to stoichiometric (x = 40) and non-stoichiometric (x > 40) sub-networks, which are built of $AsS_{3/2}$ pyramids and As-rich arrangement keeping (i) two separated As-As bonds derived from realgar-type molecules, (ii) two neighboring As-As bonds derived from pararealgar-type molecules or (iii) three neighboring As-As bonds in triangle-like geometry derived from dimorphite-type molecules. Compositional invariance of nanoamorphous phase is ensured by growing sequence of network-forming clusters with average coordination numbers Z in the row ($As_2S_{4/2}$, Z = 2.50) – ($As_3S_{5/2}$, Z = 2.55) – ($As_3S_{3/2}$, Z = 2.67). Diversity of main molecular-to-network amorphizing pathways in nanoarsenicals is reflected on the unified potential energy landscape specified for boundary As_4S_4 and As_4S_3 components.

Keywords Arsenicals · Amorphization · Ab-initio quantum-chemical modeling · Molecular cluster · Nanomilling

Introduction

The family of binary arsenic sulphides As_xS_{100-x} [1–6], often referred to as arsenicals due to their anticancer therapeutic functionality [7], are accepted as representatives of canonical substances, where diverse structure-conformation tendencies can be revealed in dependence on their chemistry. Thus, at the moderated As content in these thioarsenide alloys close to stoichiometry As_2S_3 (viz. $As_{40}S_{60}$), competitive matrix amorphization (vitrification) and layer-type conformation (crystallization) processes occur, while in As-rich As_xS_{100-x} compounds (where x exceeds 40) the latter are replaced by molecular-crystallization tendencies accompanied by stabilization of As_4S_n cage-like molecules (n = 5,4,3) [8–10].

Under full saturation of covalent chemical bonding in respect to the Mott's 8-N rule [3], which is characteristic feature of many chalcogenide compounds allowing their consideration in terms of the average coordination number Z (the number of covalent bonds per atom) [5], this As-S system reveals unprecedented glass-forming ability in a vicinity of arsenic trisulphide As₂S₃ [4]. That is why the glassy g-As₂S₃ prepared by melt-quenching cannot be crystallized during prolonged thermal treatment even above glass-transition temperature T_g [2, 3], despite the known fact on existing of isocompositional mineral with layered crystalline structure (the orthorhombic orpiment possessing space group P2₁/n) [8]. Trigonal AsS_{3/2} pyramids (as main structural motives of this glass-former) interconnected by S atoms in so-called corner- or atomshared links form basis for under-stoichiometric covalent networks of S-rich As_xS_{100-x} arsenicals (x < 40), realized

Extended author information available on the last page of the article

due to polymerization (bridging) properties of $-S_n$ — chains. Therefore, the compositional domain of stable glassformers extends in binary As-S system to $Z \sim 2.16$ dependently on melt-quenching route (it means that g-As₁₆S₈₄ possesses competitive S separation-agglomeration properties) [2–4]. Within this range of S-rich As_xS_{100-x} arsenicals up to stoichiometric As₂S₃ (2.16 < $Z \leq 2.40$), this system demonstrates few anomalies like *instability onsets* in cluster-forming energies [6], which were mistakenly accepted as "signatures" of intermediate optimally-constrained (rigid and stress-free) phases in covalent-bonded network substances [11].

Controversially, under enlarged As content in this $As_{x-100-x}$ system over As_2S_3 stoichiometry, the networkforming tendency rapidly disappears at $Z\sim 2.44-2.46$ on a cost of partially crystallized arrangement of *thioarsenide* As_4S_n molecules (n=5,4,3) [1–4]. These cage-like entities (having no dangling bonds or terminated inter-cluster links) serve as main blocks for molecular crystals of some minerals, such as uzonite As_4S_5 (Z=2.44), realgar α - As_4S_4 (Z=2.50), bonazitte or β - As_4S_4 (Z=2.50), pararealgar As_4S_4 (Z=2.50), as well as α - β -dimorphite As_4S_3 (Z=2.57) [4, 8]. The former (the uzonite As_4S_5) along with *tetra-arsenic tetrasulphide* As_4S_4 possessing four different crystallographic polymorphs seem to be most plausible candidates for devitrification in the group of meltquenched As_xS_{100-x} alloys at x>44.

Notwithstanding, phase equilibria become more complicated with progressive increase in As content in As_xS₁₀₀x arsenicals, resulting in the second glass-forming region at $51 \le x \le 66$. Hruby [1] was the first who considered these glasses as metastable plastic phases with T_g below room thermodynamically temperature. In his opinion, stable glasses of these compositions (with Z = 2.51-2.66) do not exist. The second glass-forming region in these thioarsenide alloys was shown to be superimposed with stabilization domain of tetra-arsenic trisulphide polymorphs As_4S_3 (Z = 2.57) [12, 13], meaning the crucible role of spherically-symmetric As₄S₃ cage-like molecules [14]. The plastic-crystalline rhombohedral modification of this dimorphite-type As₄S₃ phase as found by Chattopadhyay et al. [15] and further generalized by Blachnik and Wickel [16] was accepted as responsible for additional rotational disorder in these glass-formers.

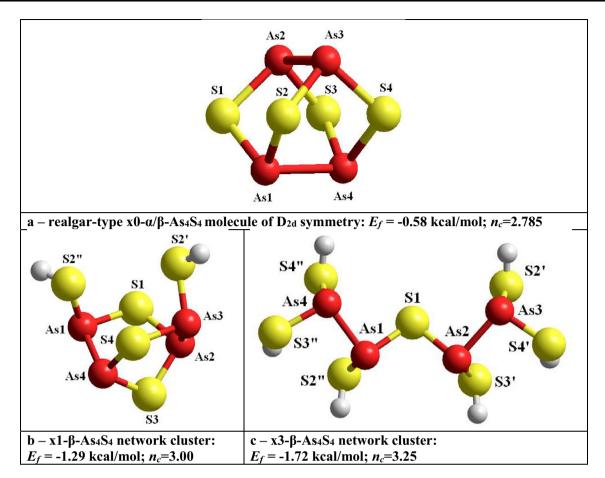
This finding was further proved by Aitken for ternary $Ge_xAs_yS_{100-x-y}$ glasses with As:Ge ratio approaching \sim 17:1 [17, 18]. It was also shown [19–21] that under nanostructurization caused by external influence such as high-energy mechanical milling (nanomilling), the complicated inter-crystalline phase transformations towards nanocrystalline β -As₄S₄ polymorph (nc- β -As₄S₄) accompanied by appearance of isocompositional amorphous phase having covalent network were activated in these

arsenicals along realgar-dimorphite As_4S_4 - As_4S_3 cut-Sect. (2.50 \leq Z \leq 2.57).

In this work, the amorphization scenarios in As_xS_{100-x} arsenicals along As_4S_4 - As_4S_3 line ($50 \le x \le 57$) will be recognized employing the advanced materials-computational approach [12, 22] developed at the basis of the authorized *ab-initio* quantum-chemical modeling code (CINCA) [6, 23, 24].

Method: the CINCA Modeling of Molecular-Network Conformations in Covalent Substances

The geometrically-optimized configurations of As₄S_n cagelike molecules (n = 4,3) and their network-forming derivatives responsible for amorphization in As_xS_{100-x} arsenicals along As₄S₄-As₄S₃ cut-line were simulated with ab-initio quantum-chemical cluster-modeling algorithm CINCA (cation-interlinked network cluster approach) [6, 23, 24]. Network-forming clusters were reconstructed by breaking respective As₄S₄ or As₄S₃ molecules on distinct fragments linking them with surrounding matrix by $S_{1/2}...S_{1/2}$ bridging chains. The HyperChem Release 7.5 program package based on restricted Hartree-Fock selfconsistent field method with split-valence double-zeta basis set and single polarization function 6-311G* [25-27] was employed for cluster energy calculations. Final geometrical optimization and single-point energy calculations for selected clusters were performed employing the Fletcher-Reeves conjugate gradient method until the root-meansquare gradient of 0.1 kcal/(Å·mol) was reached. The calculated cluster-forming energies E_f were corrected on the energy of terminated H atoms used to transform the network-forming clusters into molecular self-consistent precursors according to the procedure developed elsewhere [27, 28], and finally determined in respect to the energy of single trigonal AsS_{3/2} pyramid ($E_f = -79.404$ kcal/mol) [6, 23].


Thus, the developed cluster-modeling code CINCA allows quantitative comparison between molecular- and network-forming tendencies in covalent substances, parameterizing adequately competitive crystallization-amorphization scenarios.

Results and Discussion

Cluster Modeling of Amophization Paths Derived from Realgar-Type α/β -As₄S₄ Polymorphs

The quantum-chemical model of realgar-type As₄S₄ molecule (see Fig. 1a) was developed in our preliminary

Fig. 1 Geometrically-optimized configurations of realgar-type α/β -As₄S₄ cage-like molecule (**a**) and its energetically favorable network derivatives formed from As₄S₅H₂ molecule by single \times 1-break in S1 position (**b**), and from As₄S₇H₆ molecule by triple \times 3-break in S1-

S2-S3 positions (c). The terminated H atoms are grey-colored, S and As atoms are yellow- and red-depicted, and covalent bonds between atoms are denoted by respectively colored sticks [19, 22]

research [29]. This cage-like molecule of D_{2d} symmetry built of 8 heteronuclear As-S bonds and 2 homonuclear As-As bonds in separated mutually orthogonal configuration evolves 8 small rings (4 pentagons and 4 hexagons), thus resulting in under-constrained structural motive possessing average number of topological constraints per atom n_{c} = 2.875 (in respect to the Phillips-Thorpe constraintcounting algorithm [30-32] applied to stretching and bending forces ascribed to bonds in this molecule). The same symmetric As₄S₄ molecule (with intramolecular bond lengths and angles close to those refined from realistic crystalline structures) is character for mineral realgar α-As₄S₄ [33, 34], synthetic β -As₄S₄ [35] and its natural analogue (mineral bonazziite As₄S₄ [36]). The calculated cluster-forming energy E_f for this molecule (in respect to the energy of $AsS_{3/2}$ pyramid) equals -0.58 kcal/mol (Table 1) [19, 22], the value dominated over all molecular and network-forming arsenical clusters within compositional range of interest $(2.50 \le Z \le 2.57)$.

The most plausible amorphization scenarios in arsenic monosulphide AsS (viz. As₄S₄) are related to high-

temperature *tetra-arsenic tetrasulphide* β -As₄S₄ polymorph [10, 19, 20]. This specificity is revealed due to lower barrier of α -As₄S₄-to- β -As₄S₄ transition [37] as compared with nanostructurization-driven amorphization from each of these phases (low-temperature α -As₄S₄ or high-temperature β -As₄S₄), provided direct low-to-high-temperature phase transformation was not inhibited.

Among a group of network-forming derivatives from this realgar-type cage-like molecule (β -As₄S₄), the smallest cluster-forming energy $E_f = -1.29$ kcal/mol is achieved for single-broken \times 1- β -As₄S₄ cluster (see Table 1) derived from As₄S₅H₂ molecular precursor as shown on Fig. 1b [19, 22]. This cluster having one hexagon and two pentagons in atomic arrangement is optimally-constrained since $n_c = 3.00$, which is in strict respect to space dimensionality (D = 3). Therefore, covalent-bonded structures bult of such clusters are most favorable for amorphization. Because of low barrier with ground state of As₄S₄ molecule due to $\Delta E_f = (1.29-0.58)$ kcal/mol = 0.71 kcal/mol, the expected molecular-to-network transformation occurs even in directly synthesized arsenic monosulphide, being a

	forming energies E_f (in respect to the energy of AsS _{3/2} pyramid) ic labels refer to Fig. 1a) [19, 22]	for network-forming derivatives	from realgar-type	e β-As ₄ S ₄
Molecular	Network/molecular cluster, and respective cluster-forming	Number of rings: hexagons/	n_c E_f ,	1/ 1>

Molecular prototype	Network/molecular cluster, and respective cluster-forming scenario	Number of rings: hexagons/ pentagons	n_c	E _f , (kcal/mol)
β-As ₄ S ₄	no break (× 0-break)	4/4	2.875	- 0.58
$As_4S_5H_2$	\times 1- β -As ₄ S ₄ , \times 1-break in S1	1/2	3.00	- 1.29
$As_4S_6H_4$	\times 2–1- β -As ₄ S ₄ , \times 2-break in S1-S3	0/1	3.125	- 3.47
$As_4S_6H_4$	\times 2–2- β -As ₄ S ₄ , \times 2-break in S1-S4	1/0	3.25	- 12.59
$As_4S_7H_6$	\times 3- β -As ₄ S ₄ , \times 3-break in S1-S2-S3	0/0	3.25	- 1.72
$As_4S_8H_8$	\times 4- β -As ₄ S ₄ , \times 4-break in S1-S2-S3-S4	0/0	3.25	- 1.72

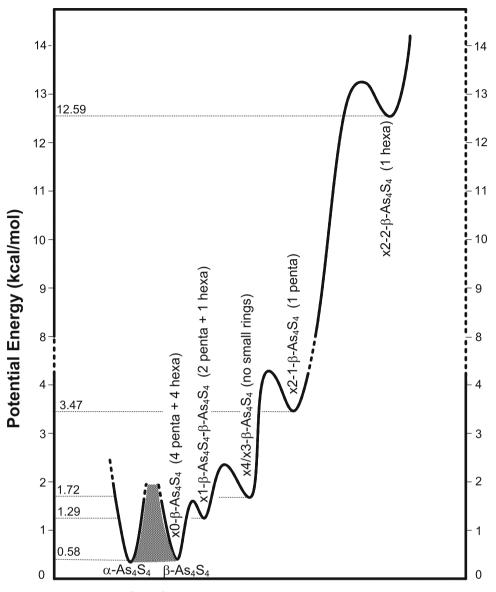
source of uncontrolled spontaneous amorphization [10, 19, 38–40].

An alternative path of induced amorphization in β-As₄S₄ is related to \times 3- β -As₄S₄ network-forming cluster prototyped by As₄S₇H₆ molecule which appears as triple-broken derivative from realgar-type As₄S₄ molecule possessing chain structure without small rings (see Fig. 1c) [19, 22]. Despite evidently over-constrained constitution (in view of $n_c = 3.25$), the small E_f value approaching -1.72 kcal/mol is character for this cluster (see Table 1), resulting in low molecular-to-network barrier $\Delta E_f = 1.14$ kcal/mol [19]. This cluster is commensurable (within \pm 0.03 kcal/mol error-bar proper to CINCA calculations [23]) with other one, the quadruple-broken \times 4- β -As₄S₄ (or, alternatively, As₂S_{4/2} cluster) obtained by breaking in all S atom positions, thus keeping separated As-As bond in network. These \times 3- β -As₄S₄ clusters surely dominate in nanostructured arsenicals (nanoarsenicals) in view of lower number of covalent bonds destructed in \times 0- β -As₄S₄ molecule.

Thus, full variety of amorphization scenarios derived from β -As₄S₄ phase can be depicted on potential energy landscape as shown on Fig. 2. The above network-forming derivatives (× 1- β -As₄S₄ and × 3- β -As₄S₄) evidently prefer over other variants of network clustering originated in part due to double-breaking of covalent bonds in realgar-type As₄S₄ molecule (× 2–1- β -As₄S₄ and × 2–2- β -As₄S₄) [19].

Cluster Modeling of Amorphization Scenarios Activated from Pararealgar As₄S₄ Phase

Pararealgar As_4S_4 as metastable product of light-induced alteration from both tetra-arsenic tetrasulphide polymorphs (α - As_4S_4 and β - As_4S_4) [8, 41, 42], was found to exist (albeit in small amount) in As_4S_4 - As_4S_3 alloys prepared by melt-quenching and/or nanomilling [20] (following the Kyono's notation [43], and for sake of convenience, this phase will be marked thereafter as p- As_4S_4).


Notwithstanding, the network-forming tendencies derived from this pararealgar p-As₄S₄ phase should be accepted in the overall balance of possible amorphization scenarios in the studied arsenicals, provided they were preliminary light-soaked.

The simulated pararealgar-type p-As₄S₄ cage-like molecule possesses reduced C_s symmetry due to asymmetric adjacent configuration of two neighboring homonuclear As-As bonds (such as As4-As3 and As2-As3 on Fig. 3a) with common As3 atom, the optimized parameters of this configuration in Table 2 being agreed with those determined from the known experimental model [40]. This p-As₄S₄ molecule includes one tetragon (As2As3As4S1), two pentagons (As1S2As2As3S3 and As1S4As4As3S3) and one hexagon (As1S4As4S1As2S2), thus resulting in under-constrained topological motive with $n_c = 2.75$ (Table 3). In comparison with realgar-type As₄S₄ molecule (Fig. 1a), the calculated E_f energy for this molecule is higher approaching -0.94 kcal/mol.

A great variety of network-forming clusters are expected from this asymmetric configuration of metastable p-As₄S₄ molecule, their small-ring characteristics (number and type of small rings, hexagons/pentagons/tetragons) and clusterforming energies E_f being presented in Table 3. The most plausible among them seems to be \times 4-p-As₄S₄ cluster reconstructed from As₄S₈H₈ molecular precursor due to quadruple × 4-break in all S atom positions, which completely destroys small-ring structure of this molecule separating arsenical matrix on AsS₃H₃ and As₃S₅H₅ molecular precursors (see Fig. 3b). From network-reconstruction viewpoint, this cluster with equivalent bond distances and angles given in Table 4 results in over-constrained topology of overall backbone with $n_c = 3.25$ in average. Realistically, this configuration split into amorphous subnetworks composed of optimally-constrained interlinked AsS_{3/2} pyramids (Z = 2.40; $n_c = 3.00$) and over-constrained stressed-rigid As₃S_{5/2} chains (Z = 2.55; $n_c = 3.36$). Direct bonded As-S and As-As distances in these clusters fit respectively within ~ 2.26 Å and ~ 2.47 Å, while

Fig. 2 Potential energy landscape showing amorphization scenarios derived from β-As₄S₄ phase. The settlepoints corresponding to network clusters derived from realgartype As_4S_4 molecules by x-fold bond-breaking (keeping small rings, such as pentagons/ hexagons nominated in parenthesis) are denoted with respective cluster-forming energies E_f at the right axis. The ground molecular-crystalline state is given in double-well presentation for lowtemperature realgar α -As₄S₄ and high-temperature β-As₄S₄ polymorph (no amorphization transitions are expected from α-As₄S₄ state)

Configuration coordinate

more essential deviations are observed in bond angles at As atoms. Molecular-to-network barrier for this amorphization pathway is low approaching $\Delta E_f = (1.56-0.94)$ kcal/mol = 0.62 kcal/mol, this value being comparable with ΔE_f for other transitions forming optimally-constrained single-broken × 1–1-p-As₄S₄ ($\Delta E_f = 0.84$ kcal/mol) and triple-broken × 3–1-p-As₄S₄ derivatives ($\Delta E_f = 1.19$ kcal/mol) having $n_c = 3.00$, along with over-constrained double-broken × 2–4-p-As₄S₄ derivatives with $n_c = 3.25$ ($\Delta E_f = 1.15$ kcal/mol). These data testify in favor of rather shallow-level character of respective potential energy landscape on Fig. 4 illustrating amorphization scenarios originated from pararealgar-type p-As₄S₄ arsenicals. Because of low barriers between these wells, transition towards quadruple-broken × 4-p-As₄S₄ network-forming

clusters possessing $E_f = -1.56$ kcal/mol seems to be most favorable.

Thus, decomposition on two different topological subnetworks occurs first from p-As₄S₄ arsenical, these being *stoichiometric* optimally-constrained (Z = 2.40, $n_c = 3.00$) and *non-stoichiometric* As-rich over-constrained ones (Z = 2.55, $n_c = 3.36$). In the realistic arsenical systems compositionally close to arsenic monosulphide AsS, this process is expected to be merely blocked, provided appearance of pararealgar p-As₄S₄ phase is inhibited.

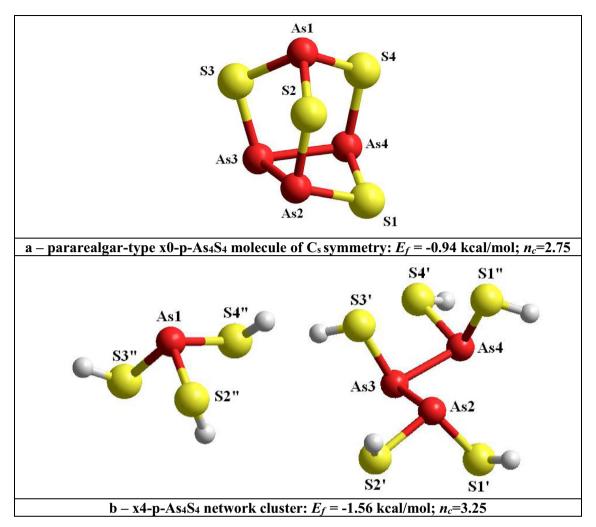


Fig. 3 Geometrically-optimized configurations of pararealgar-type p-As $_4$ S $_4$ cage-like molecule (a) and its most energetically favorable network derivative separating arsenical matrix on AsS $_3$ H $_3$ and As $_3$ S $_5$ H $_5$ molecules due to quadruple \times 4-break in S1-S2-S3-S4

positions. The terminated H atoms are grey colored, S and As atoms are respectively depicted by yellow and red balls, and covalent bonds between atoms are stick-denoted

Cluster Modeling of Amorphization Paths Derived from Dimorphite α/β -As₄S₃ Phases

Removing one S atom at the bottom of pararealgar p-As $_4$ S $_4$ molecule (within As2-As3-As4-S1 sequence, Fig. 3a), replacing it by one As-As bond, transfers this molecule to other one As $_4$ S $_3$ -I corresponding to both low- and high-temperature polymorphs of mineral dimorphite α/β -As $_4$ S $_3$ [12, 13]. This is most energetically plausible configuration of this As $_4$ S $_3$ molecule formed from six heteronuclear As-S and three homonuclear As-As bonds as shown on Fig. 5a. The optimized bond distances and angles in this \times 0-As $_4$ S $_3$ -I molecule obeying *triangle-like* conformation due to the basal 3-membered As $_3$ -ring (triangle) composed of As2-As3-As4 atoms, surmounted by AsS $_{3/2}$ pyramid composed of As1-(S1-S2-S3) atoms (see Fig. 5a) have been derived from CINCA modeling and gathered in

Table 5. It's seen that direct bonded As-As distances in As₃-triangle approach ~ 2.467 Å with all bond angles close to $\sim 60^{\circ}$. Direct bonded As-S distances within AsS_{3/2} pyramid and As-S distances connecting this pyramid with bottom As₃-ring approach ~ 2.235 Å, with angle on As1 atom at the apex of AsS_{3/2} pyramid close to $\sim 99.04^{\circ}$. The calculated E_f energy for this molecule (in respect to the energy of AsS_{3/2} pyramid) was found to be -1.78 kcal/mol (see Table 6), the value worse than in molecular As₄S₄-type polymorphs, but comparable and even better than in network-forming derivatives from these cage-like molecules (compare respective energies in Tables 1, 3, 6).

Previously, the crystallographic features of under-constrained As_4S_3 molecule ($n_c = 2.71$, Table 6) possessing C_{3v} symmetry with four small rings (three pentagons and one triangle) were specified (see, e.g. refs. [8, 14]), and geometrically-optimized parameters of this molecule were

Table 2 Geometrically-optimized bond distances and angles in pararealgar-type p-As₄S₄ molecule (atom labels refer to Fig. 3a)

Equivalent b	ond distances	Equivalent bond ang	gles		
Atoms	Distance (Å)	Atoms	Distance (Å)	Angle	Deg. (°)
Direct bonde	ed distances	∠ S–As–S			
As3-As4	2.4898	As2-As3	2.4905	∠ S1–As4–S4	104.406
As1-S2	2.2453	As2-S1	2.2652	\angle S1–As2–S2	104.398
As1-S3	2.2486	As2-S2	2.2487	\angle S2-As1-S4	104.239
As1-S4	2.2460	As4-S1	2.2652	\angle S2-As1-S3	98.843
As3-S3	2.2141	As4-S4	2.2486	∠ S3–As1–S4	98.783
Non-bonded	distances			\angle S-As-As	
As1-As2	3.6481	As1-As4	3.6487	∠ S3–As3–As2	101.756
As1-As3	3.4837	As2-As4	3.3508	∠ S3–As3–As4	101.754
				\angle S2–As2–As3	100.465
As1-S1	4.3673	As3-S2	3.6460	∠ S4–As4–As3	100.457
As2-S3	3.6540	As3-S4	3.6452	\angle S1–As2–As3	86.002
As2-S4	4.1150	As4-S2	4.1154	∠ S1–As4–As3	86.019
As3-S1	3.2476	As4-S3	3.6533	$\angle As$ - As - As	
				∠ As2–As3–As4	84.570
S1-S2	3.5668	S2-S3	3.4132	$\angle As$ - S - As	
S1-S3	4.7549	S2-S4	3.5449	∠ As2–S2–As1	108.539
S1-S4	3.5666	S3-S4	3.4122	∠ As4–S4–As1	108.543
				∠ As3–S3–As1	102.635
				∠ As2–S1–As4	95.398

Table 3 Cluster-forming energies E_f (in respect to the energy of AsS_{3/2} pyramid) for network-forming derivatives from pararealgar-type p-As₄S₄ molecule (atom labels refer to Fig. 3a)

Molecular prototype	Network/molecular cluster, and respective cluster- forming path	Number of rings: hexagons/pentagons/tetragons	n_c	E_f , (kcal/mol)
p-As ₄ S ₄	× 0-p-As ₄ S ₄ , no break (× 0-break)	1/2/1	2.75	- 0.94
$As_4S_5H_2$	\times 1–1-p-As ₄ S ₄ , \times 1-break in S1	0/2/0	3.00	- 1.78
$As_4S_5H_2$	\times 1–2-p-As ₄ S ₄ , \times 1-break in S2	0/1/1	2.875	-3.01
$As_4S_5H_2$	\times 1–3-p-As ₄ S ₄ , \times 1-break in S3	1/0/1	3.00	-3.09
$As_4S_6H_4$	\times 2–1-p-As ₄ S ₄ , \times 2-break in S2–S4	0/0/1	3.00	-4.82
$As_4S_6H_4$	\times 2–2-p-As ₄ S ₄ , \times 2-break in S2–S1	0/1/0	3.125	-8.41
$As_4S_6H_4$	\times 2–3-p-As ₄ S ₄ , \times 2-break in S2–S3	0/0/1	3.00	- 12.12
$As_4S_6H_4$	\times 2–4-p-As ₄ S ₄ , \times 2-break in S3–S1	1/0/0	3.25	-2.09
$As_4S_7H_6$	\times 3-1-p-As ₄ S ₄ , \times 3-break in S2-S4-S3	0/0/1	3.00	-2.13
$As_4S_7H_6$	\times 3–2-p-As ₄ S ₄ , \times 3-break in S2–S4–S1	0/0/0	3.25	- 7.98
$As_4S_7H_6$	\times 3–3-p-As ₄ S ₄ , \times 3-break in S2–S3–S1	0/0/0	3.25	-7.14
$As_4S_8H_8$	\times 4-p-As ₄ S ₄ , \times 4-break in S1–S2–S3–S4	0/0/0	3.25	- 1.56

derived from *ab-initio* quantum-chemical model of Kyono [43]. However, the energetic specificity of competitive molecular-network amorphizing tendencies in dimorphite-type As₄S₃ arsenicals has not been established.

In general, dimorphite α/β -As₄S₃-type molecule allows three network-forming configurations, which can be reconstructed from \times 0-As₄S₃-I cages shown on Fig. 5a

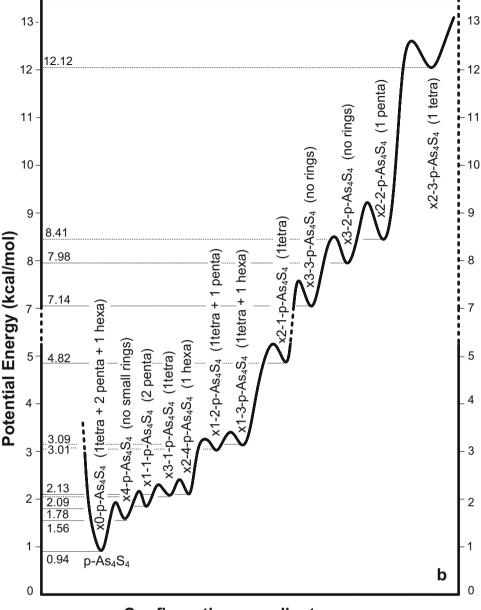
by \times 1-, \times 2-, \times 3-breaking in respective S1, S2, S3 positions, these configurations being parameterized and compared in Table 6.

The optimally-constrained double-broken \times 2-As₄S₃-I clusters having $n_c = 3.00$ in view of one small ring kept in the structure (As₃-triangle) cannot be stabilized in realistic amorphous structures because of unfavorable cluster-

Table 4 Geometrically-optimized bond distances and angles in network derivative from pararealgar-type p-As₄S₄ cage-like molecule separating matrix on AsS₃H₃ and As₃S₅H₅ molecules due to quadruple × 4-break in all S atoms (atom labels refer to Fig. 3b)

Equivalent bond distances			Equivalent bond ang	gles	
Atoms	Distance (Å)	Atoms	Distance (Å)	Angle	Deg. (°)
AsS ₃ H ₃ mol	ecule				
Direct bonde	ed distances			$\angle S$ -As-S	
As1-S2"	2.2540	As1-S4"	2.2561	∠ S4"-As1-S2"	101.939
As1-S3"	2.2515			∠ S4"-As1-S3"	92.673
Non-bonded	distances			\angle S2"-As1-S3"	102.941
S2"-S3"	3.5246	S3"-S4"	3.2608		
S2"-S4"	3.5035				
As ₃ S ₅ H ₅ mo	lecule				
Direct bonde	ed distances			$\angle S$ -As-S	
As3-As4	2.4730	As2-As3	2.4659	\angle S1"-As4-S4'	101.787
As2-S1'	2.2605	As4-S1"	2.2595	\angle S1'-As2-S2'	101.412
As2-S2'	2.2611	As4-S4'	2.2525	\angle S-As-As	
As3-S3'	2.2573			\angle S1'-As2-As3	94.938
Non-bonded	distances			\angle S2'-As2-As3	95.462
As2-As4	3.7602	S1'-S1"	4.7220	\angle S3'-As3-As2	94.414
As2-S1"	3.9534	S1'-S2'	3.4992	\angle S3'-As3-As4	102.986
As2-S3'	3.4688	S1'-S3'	5.3008	\angle S1"-As4-As3	103.109
As2-S4'	5.4982	S1'-S4'	6.0459	\angle S4'-As4-As3	94.737
As3-S1'	3.4856	S2'-S1"	6.0918	$\angle As-As-As$	
As3-S1"	3.7089	S2'-S3'	4.2681	\angle As2–As3–As4	99.165
As3-S2'	3.5006	S2'-S4'	6.9640		
As3-S4'	3.4799	S3'-S1"	3.8688		
As4-S1'	3.9519	S3'-S4'	3.8463		
As4-S2'	5.5827	S4'-S1"	3.5012		
As4-S3'	3.7041				

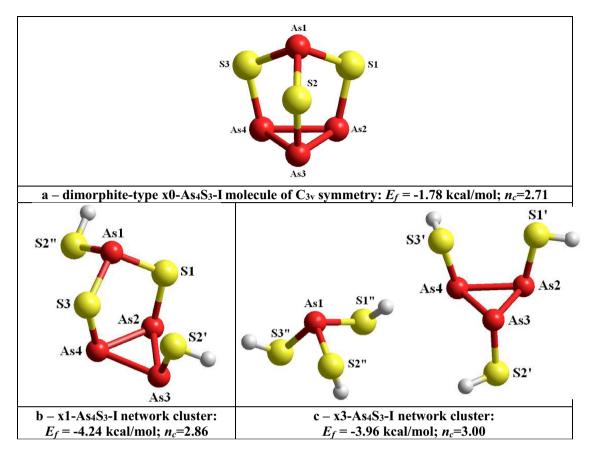
forming energy $E_f = -11.68$ kcal/mol (Table 6). The most plausible amorphization path originated from this α/β-As₄S₃-type arsenical seems to be related to other possibility of molecular-cage destroying connected with \times 3-break in all S atom positions, when arsenical matrix built of \times 3-As₄S₃-I clusters (Z = 2.57; $n_c = 3.00$) are decomposed in two optimally-constrained sub-networks having AsS₃H₃ and As₃S₃H₃ molecular precursors (Fig. 5c). Like in pararealgar structures, one sub-network is composed of AsS_{3/2} pyramids (Z = 2.40; $n_c = 3.00$) with identical parameters (compare these parameters for AsS₃H₃ molecule separated from p-As₄S₄ in Table 4 and from α/β -As₄S₃ in Table 7). Other sub-network decomposed from dimorphite-type arsenicals under × 3-break represents optimally-constrained As₃S_{3/2} clusters (Z = 2.67; $n_c = 3.00$) keeping basal As₃-ring incorporated by triplicate = As-Schain links. As it follows from potential energy landscape on Fig. 6a, the calculated molecular-to-network barrier for this amorphization path is low $\Delta E_f = (3.96-1.78)$ kcal/mol = 2.18 kcal/mol. The only competitive variant for this amorphization scenario in dimorphite-type arsenicals is incomplete destroying of As₄S₃-I molecule in triangle-like


conformation due to \times 1-break in S1 position keeping two neighboring small rings (triangle As2As3As4 and pentagon As2As4S3As1S1, see Fig. 5b), thus stabilizing underconstrained amorphous matrix with $n_c = 2.86$ and comparable value of $E_f = -4.24$ kcal/mol.

The *triangle-like* conformation shown in Fig. 5a is not alone arrangement of As_4S_3 molecular cages, two other under-constrained configurations, the *chain-like* As_4S_3 -II with $n_c = 2.71$ (Fig. 7a) and *star-like* As_4S_3 -III with n_{c-1} with n_{c-1} and n_{c-1} with n_{c-1}

Removing S atom from one of two equivalent positions S2 or S4 within asymmetric p-As₄S₄ molecule on Fig. 3a, replacing it by As-As bond, transfers this molecule to other one As₄S₃-II distinguished by *chain-like* or zig-zag conformation due to sequent arrangement of all four As atoms (within As1As3As2As4 chain as shown in Fig. 7a). The cluster-forming E_f energies for geometrically-optimized configuration of this molecule and its main network-

Fig. 4 Potential energy landscape illustrating amorphization scenarios derived from pararealgar-type p-As₄S₄ arsenical. The shallow-level character of network-forming derivatives reconstructed from pararealgar \times 0-p-As₄S₄ molecule is obvious. The settlepoints of network clusters derived by x-fold bond-breaking (keeping small rings, such as tetragons/pentagons/hexagons nominated in parenthesis) are denoted with respective clusterforming energies E_f at the right


Configuration coordinate

forming derivatives are gathered in Table 6 and reflected on potential energy landscape (see Fig. 6b). It's clearly seen that two types of network derivatives (single-broken \times 1–1–As₄S₃-II with $n_c = 3.00$ and triple-broken \times 3-As₄S₃-II with $n_c = 3.43$) are more favorable than parent \times 0-As₄S₃-II molecule, the configuration of optimally-constrained \times 1–1-As₄S₃-II network cluster being shown on Fig. 7b. It means that this *chain-like* molecular conformation cannot be stabilized realistically, being rather defective one.

The similar finding concerns other conformation possible for molecular As_4S_3 cages on Fig. 8a. This is so-called *star-like* conformation of \times 0-As₄S₃-III molecule, which

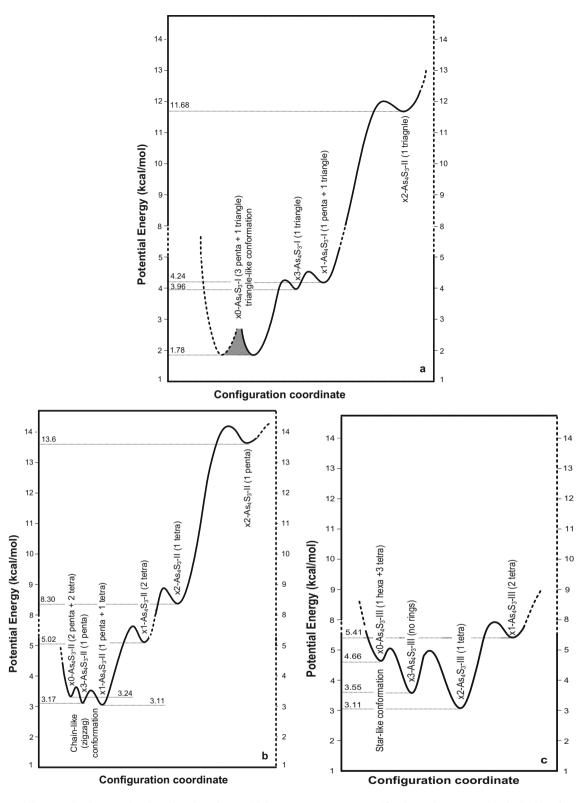
can be reconstructed from pararealgar p-As₄S₄ molecule (Fig. 3a) removing S atom from S3 position of surmounted pyramid As1(S2S3S4). The character *star-like* configuration in this molecule is formed by central As4 atom bonded to other three As atoms (As1, As2, and As3) as illustrated on Fig. 8a. As it follows from potential energy landscape on Fig. 6c, this under-constrained \times 0-As₄S₃-III molecule ($n_c = 2.57$) is evidently unfavorable before two over-constrained network derivatives such as double-broken \times 2-As₄S₃-III with $n_c = 3.14$ (Fig. 8b) and triple-broken \times 3-As₄S₃-III with $n_c = 3.43$. Therefore, as in the previous case, the *star-like* conformation is not expected in realistic As₄S₃-type arsenical structures.

Fig. 5 Geometrically-optimized configurations of dimorphite-type α/β-As₄S₃ cage-like molecule in *triangle-like* conformation × 0-As₄S₃-I (**a**) and its most energetically favorable network derivatives formed from As₄S₄H₂ molecule by single × 1-break in S2 position (**b**) and

separating matrix on AsS_3H_3 and $As_3S_3H_3$ molecules due to triple \times 3-break in S1-S2-S3 positions (c). The terminated H atoms are grey-colored, S and As atoms are yellow- and red-depicted, and covalent bonds between atoms are stick-denoted

 $\textbf{Table 5} \ \ \text{Geometrically-optimized bond distances and angles in dimorphite-type} \ \alpha / \beta - As_4S_3 \ \text{cage-like molecule (atom labels refer to Fig. 5a)}$

Equivalent bond distances				Equiva	lent bond an	ngles		
Atoms	Distance (Å)	Atoms	Distance (Å)	Angle		Deg. (°)	Angle	Deg. (°)
Direct bond	ed distances			∠ S–A.	s–S		$\angle As$ -S-As	
As2-As3	2.4668	As3-As4	2.4664	∠ S1–As1–S2	2	99.042	\angle As1–S1–As2	104.627
As2-As4	2.4668			∠ S1–As1–S3	}	99.040	\angle As1–S2–As3	104.596
As1-S1	2.2349	As2-S1	2.2348	∠ S2–As1–S3	}	99.037	\angle As1–S3–As4	104.595
As1-S2	2.2353	As3-S2	2.2349					
As1-S3	2.2352	As4-S3	2.2349	\angle S-As-As			$\angle As-As-As$	
Non-bonded	distances			∠ S1-	As2-As3	102.039	\angle As3–As2–As4	59.990
As1-As2	3.5372	As1-As4	3.5368	∠ S1–As2–As	s4	102.038	\angle As2–As3–As4	60.005
As1-As3	3.5368	As4-S1	3.6577	∠ S2–As3–As	s2	102.069	\angle As2–As4–As3	60.005
As2-S2	3.6586	As4-S2	3.6580	∠ S2–As3–As	s4	102.058		
As2-S3	3.6586	S1-S2	3.4002	∠ S3–As4–As	s2	102.068		
As3-S1	3.6577	S1-S3	3.4001	∠ S3–As4–As	s3	102.062		
As3–S3	3.6581	S2-S3	3.4003					


Table 6 Cluster-forming energies E_f (in respect to the energy of $AsS_{3/2}$ pyramid) for network-forming derivatives from As_4S_3 -type cage-like molecules (atom labels refer to Fig. 5a, 7a, 8a)

Molecular prototype	Network/molecular cluster, and respective cluster- forming path	Number of rings: pentagons/ tetragons/triangles	n_c	E _f (kcal/mol)
Dimorphite-typ	e α/β-As ₄ S ₃ cage-like molecule in <i>triangle-like</i> conformatio	on		
As ₄ S ₃ -I	\times 0-As ₄ S ₃ -I, no breaks	3/0/1	2.71	- 1.78
$As_4S_4H_2$	\times 1-As ₄ S ₃ -I, \times 1-break in S1	1/0/1	2.86	-4.24
$As_4S_5H_4$	\times 2-As ₄ S ₃ -I, \times 2-break in S1–S2	0/0/1	3.00	- 11.68
$As_4S_6H_6$	\times 3-As ₄ S ₃ -I, \times 3-break in S1–S2–S3	0/0/1	3.00	-3.96
As ₄ S ₃ cage-like	e molecule in <i>chain-like</i> conformation			
As ₄ S ₃ -II	\times 0-As ₄ S ₃ -II, no breaks	2/2/0	2.71	- 3.23
$As_4S_4H_2$	\times 1–1-As ₄ S ₃ -II, \times 1-break in S2	1/1/0	3.00	- 3.11
$As_4S_4H_2$	\times 1–2-As ₄ S ₃ -II, \times 1-break in S1	0/2/0	2.86	-5.02
$As_4S_5H_4$	\times 2–1-As ₄ S ₃ -I, \times 2-break in S2–S3	1/0/0	3.29	- 13.60
$As_4S_5H_4$	\times 2–2-As ₄ S ₃ -I, \times 2-break in S1–S3	0/1/0	3.14	- 8.30
$As_4S_6H_6$	\times 3-As ₄ S ₃ -II, \times 3-break in S1–S2–S3	0/0/0	3.43	- 3.17
As ₄ S ₃ cage-like	e molecule in <i>star</i> -like conformation			
As ₄ S ₃ -III	\times 0-As ₄ S ₃ -III, no breaks	0/3/0	2.86	- 4.66
$As_4S_4H_2$	\times 1-As ₄ S ₃ -III, \times 1-break in S1	0/2/0	2.86	- 5.41
$As_4S_5H_4$	\times 2-As ₄ S ₃ -III, \times 2-break in S1–S2	0/1/0	3.14	- 3.11
As ₄ S ₆ H ₆	\times 3-As ₄ S ₃ -III, \times 3-break in S1–S2–S3	0/0/0	3.43	- 3.55

Table 7 Geometrically-optimized bond distances and angles in network derivative from dimorphite α/β -As₄S₃ cage-like molecule in *triangle-like* conformation, separating matrix on AsS₃H₃ and As₃S₃H₃ molecules due to triple \times 3-break in S1-S2-S3 positions (atom labels refer to Fig. 5c)

Equivalent b	ond distances	Equivalent bond ang	gles		
Atoms	Distance (Å)	Atoms	Distance (Å)	Angle	Deg. (°)
AsS ₃ H ₃ mol	ecule				
Direct bonde	ed distances			$\angle S$ -As-S	
As1-S2"	2.2540	As1-S4"	2.2561	∠ S4"-As1-S2"	101.939
As1-S3"	2.2515			∠ S4"-As1-S3"	92.673
Non-bonded	distances			\angle S2"-As1-S3"	102.941
S2"-S3"	3.5246	S3"-S4"	3.2608		
S2"-S4"	3.5035				
As ₃ S ₃ H ₃ mo	lecule				
Direct bonde	ed distances			$\angle As-As-As$	
As2-As3	2.4500	As3-As4	2.4589	∠ As3–As2–As4	59.931
As2-As4	2.4728	As3-S2'	2.2724	∠ As2–As3–As4	60.496
As2-S1'	2.2600	As4-S3'	2.2631	∠ As2–As4–As3	59.573
Non-bonded	distances			$\angle S$ -As-As	
As2-S2'	3.4745	As4-S1'	3.7033	\angle S1'-As2-As3	99.979
As2-S3'	3.7687	As4-S2'	3.5417	\angle S1'-As2-As4	102.882
				\angle S2'-As3-As2	94.668
As3-S1'	3.6095			\angle S2'-As3-As4	96.853
As3-S3'	3.5565			∠ S3′–As4–As2	105.370
				\angle S3'-As4-As3	97.649

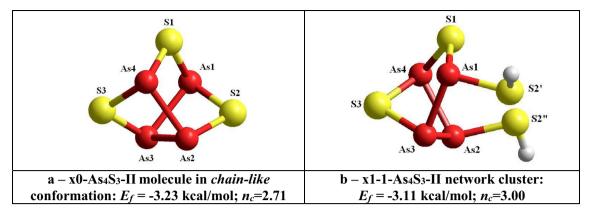


Fig. 6 Potential energy landscapes showing diversity of amorphizing network-forming states originated from As₄S₃ cage-like molecules in different conformations: *triangle*-like (a), *chain*-like or *zig-zag* (b), and *star*-like (c). The double-well presentation of ground state for *triangle*-like As₄S₃-I molecule corresponds to low- and high-

temperature modifications of tetra-arsenic trisulphide after Whitfield [12, 13]. The settle-points corresponding to network clusters derived by x-fold bond-breaking (keeping small rings, such as triangles/tetragons/pentagons/hexagons nominated in parenthesis) are denoted with respective forming energies E_f at the left axis

Fig. 7 Geometrically-optimized configuration of As_4S_3 cage molecule in *chain-like* conformation \times 0- As_4S_3 -II (a) and its most favorable network derivative \times 1–1- As_4S_3 -II formed from prototype

 $As_4S_4H_2$ molecule by single \times 1-break in S2 position (b). The terminated H atoms are grey colored, S and As atoms are yellow- and red-depicted, and inter-cluster bonds are stick-denoted

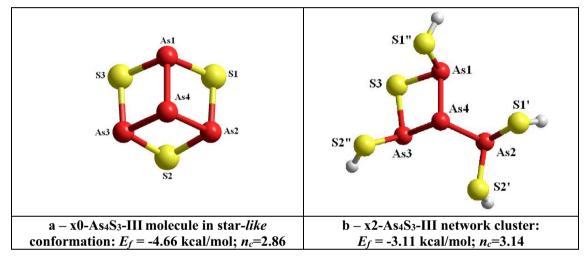


Fig. 8 Geometrically-optimized configuration of As_4S_3 cage molecule in star-like conformation \times 0- As_4S_3 -III (a) and its most favorable network derivative \times 2- As_4S_3 -III formed from prototype

 $As_4S_5H_4$ molecule by double \times 2-break in S1 and S2 positions (**b**). The terminated H atoms are grey colored, S and As atoms are yellowand red-depicted, and inter-cluster bonds are stick-denoted

Competitive Amorphization Scenarios in Nanostructured As₄S₄-As₄S₃ Arsenicals

Recent calorimetric heat-capacity studies of nanoamorphization processes in As_xS_{100-x} arsenicals driven by external influences such as nanomilling testify that amorphous phase generated within As₄S₄-As₄S₃ domain (2.50 < Z < 2.57) is close to initial melt-quenched arsenical [20, 21, 40]. This fact assuredly serves as main argumentation on the appeared amorphous phase as mixture of network-forming derivatives originated from realgar As₄S₄-type and dimorphite As₄S₃-type molecules. Alternatively, this process can be classified as nanomillingdriven amorphization of melt-quenched alloy [19], in contrast to amorphization associated with decomposition of nanostructured phases occurring in these arsenicals enriched on plastic-crystalline β -As₄S₃ phase

Noteworthy, in respect to temperature-modulated DSC TOPEM® measurements [20, 39], amorphous nanophase generated in these arsenicals possesses double- T_g relaxation, having high-temperature glass-transition mid-point T_{g1} close to that of melt-quenched As₂S₃ alloy and low-temperature glass-transition mid-point T_{g2} near solidus of metastable melting in the respective over-stoichiometric arsenical.

Having in mind this specificity of calorimetric events in As_xS_{100-x} alloys, let's clarify diversity of amorphization scenarios realized in these arsenicals along $As_4S_4-As_4S_3$ cut-line.

In realgar As_4S_4 -type arsenicals with \times 0- β - As_4S_4 molecular cluster-precursor (see Fig. 1a), most energetically favorable network-forming amorphizing cluster \times 1- β - As_4S_4 can be derived from $As_4S_5H_2$ molecular precursor by single-break in one of S atom positions as illustrated in

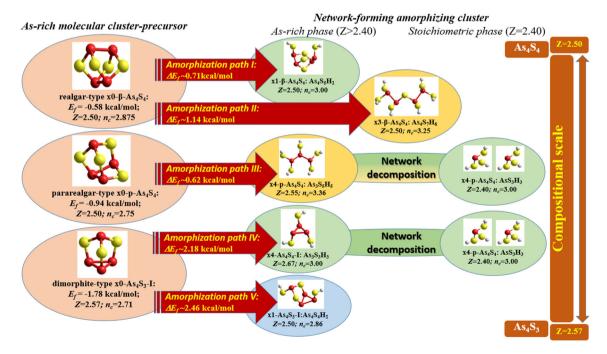


Fig. 1b. This amorphization path I from molecular underconstrained arrangement ($n_c = 2.875$) to network-forming optimally-constrained arrangement ($n_c = 3.00$) keeping two pentagons is realized with the lowest inter-well barrier of $\Delta E_f = 0.71$ kcal/mol (Fig. 9), thus being basic one for amorphizing As₄S₄-type arsenicals. Competitively, amorphization path II from \times 0- β -As₄S₄ molecular precursor to over-constrained ($n_c = 3.25$) triple-broken derivative (viz. chain-type \times 3- β -As₄S₄ cluster) or, alternatively, but with smaller probability, to quadruple-broken derivative (viz. \times 4- β -As₄S₄ or As₂S_{4/2} cluster) can be realized in this arsenical with barrier of $\Delta E_f = 1.14$ kcal/mol. Whichever the case, these network-forming clusters (\times 1- β -As₄S₄,- \times 3- β -As₄S₄ or \times 4- β -As₄S₄) are over-stoichiometric ones (Z = 2.50) contributing rather to network modes with low-temperature T_{g2} temperature near solidus of metastable melting in As₄S₄ alloy.

The only variant on phase-decomposed amorphous substance which can be derived from As₄S₄-type alloys appears due to adjacent (neighboring) arrangement of both As–As bonds in pararealgar p-As₄S₄ structure (Fig. 3). Network decomposition occurs from p-As₄S₄ cage-like molecule (Fig. 3a) owing to \times 4-break in all S atom positions resulting in \times 4-p-As₄S₄ cluster, separating matrix on two sub-networks composed of optimally-constrained AsS_{3/2} pyramids ($n_c = 3.00$, Z = 2.40) and overconstrained As₃S_{5/2} chains ($n_c = 3.36$, Z = 2.55) with low

barrier of molecular-to-network transition approaching 0.62 kcal/mol, as depicted by amorphization pathway III on Fig. 9. Thus, the amorphous phase generated in this case possesses double- T_g relaxation with high-temperature T_{gl} close to glass-transition mid-point of g-As₂S₃ (\sim 208 °C [39]) and low-temperature T_{g2} near glass-transition mid-point corresponding to solidus of metastable melting of over-stoichiometric As₅₅S₄₅ (\sim 130 °C as determined by Hruby [1]). Realistically, such transformations in As₄S₄-type arsenicals are possible just from so-called χ -phase As₄S₄ considered as intermediate precursor of pararealgar p-As₄S₄ phase in light-induced alteration from α/β -As₄S₄ phases [42, 44–46]. This χ -phase As₄S₄ was indeed identified in arsenic monosulphide employing the Raman scattering spectroscopy [20].

From the other side, in dimorphite α/β -As₄S₃-type arsenicals, amorphization can be realized only from As₄S₃ molecules possessing *triangle-like* conformation of neighboring As-As bonds (see Fig. 5a). The most favorable amorphization path IV for this \times 0-As₄S₃-I molecule with $\Delta E_f = 2.18$ kcal/mol is connected with matrix decomposition in two optimally-constrained sub-networks ($n_c = 3.00$) depicted on Fig. 5c, these being composed of AsS_{3/2} pyramids (Z = 2.40) and As₃S_{3/2} clusters (Z = 2.67) keeping three neighboring homonuclear As-As bonds in triangle-like geometry. The latter are responsible for sharp 275 cm⁻¹ band ascribed to symmetric-stretch breathing mode

Fig. 9 Competitive amorphization scenarios in nanostructured As_4S_4 - As_4S_3 arsenicals driven from boundary compositions of As-rich molecular precursors As_4S_4 and As_4S_3 . The molecular precursors of most favorable network-forming clusters are also depicted. The optimally-constrained clusters with $n_c = 3.00$ are inserted in green

boxes, while orange and blue colors are used respectively for over-constrained ($n_c > 3.00$) and under-constrained clusters ($n_c < 3.00$). In the cluster marking, terminated H atoms are grey colored, S and As atoms are yellow- and red-colored, and inter-cluster covalent bonds are denoted by respectively-colored sticks

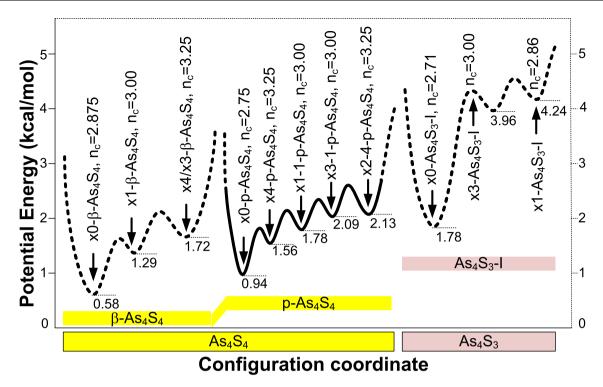
of the basal As₃-rings in the Raman spectra of As₄S₃-type alloys [14, 17, 18, 20, 21, 28]. Thereby, in the current case, the amorphizing substance also demonstrates strong glassforming ability due to optimally-constrained topology of covalent backbone ($n_c = 3.00$), possessing double- T_g relaxation with distinguishable glass-transition mid-points T_{g1} and T_{g2} as for \times 4-p-As₄S₄ clusters derived from pararealgar p-As₄S₄ molecule.

This amorphization path IV dominates in dimorphite As_4S_3 -type arsenicals (see Fig. 9), the only competitive amorphization path V being related to incomplete destroying of As_4S_3 -I molecule due to single \times 1-break stabilizing under-constrained matrix ($n_c = 2.86$) with neighboring small rings in triangle and pentagon configurations (as shown in Fig. 5b). This variant is to be considered rather as defective in view of higher molecular-to-network barrier $\Delta E_f = 2.46$ kcal/mol.

Thus, nanoamorphization in As_4S_4 - As_4S_3 arsenicals dominates by clear tendency towards optimally-constrained structural network with $n_c = 3.00$ stabilized via pathways I, III and IV (see Fig. 9), respective molecular-to-network transitions being accompanied by arsenical decomposition on stoichiometric (Z = 2.40) and over-stoichiometric (Z > 2.40) sub-networks via path III and IV. Competitive contribution of these amorphization scenarios is defined preferentially by arsenical composition, where higher barriers of molecular-to-network transition in dimorphite-type As_4S_3 arsenicals ($\Delta E_f > 2$ kcal/mol) allow As_4S_4 - As_4S_3 alloys nominated as higher-crystalline ones, in full respect to terminology of Hruby [1].

The unified potential energy landscape showing diversity of molecular-to-network amorphization scenarios in the studied nanostructured arsenicals realized for boundary As₄S₄ and As₄S₃ components is shown on Fig. 10.

Under nanostructurization due to high-efficient external influence such as nanomilling, the role of As₄S₄-type arsenicals is mainly revealed through amorphization transitions from under-constrained realgar-type \times 0- β -As₄S₄ molecule ($n_c = 2.875$) supplemented by transitions from under-constrained pararealgar-type \times 0-p-As₄S₄ ones (n_{c} -= 2.75). The former dominates by appearance of networkforming optimally-constrained \times 1- β -As₄S₄ clusters (having $n_c = 3.00$ and molecular-to-network barrier approaching $\Delta E_f = 0.71$ kcal/mol) along with over-constrained \times 3β-As₄S₄ clusters (having $n_c = 3.25$ and $\Delta E_f = 1.14$ kcal/mol). The latter dominates mainly by transformation towards \times 4-p-As₄S₄ clusters separating the arsenical matrix on two sub-networks composed of stoichiometric optimally-constrained AsS_{3/2} trigonal pyramids (Z = 2.40, $n_c = 3.00$) and As-rich non-stoichiometric over-constrained As₃S_{5/2} chains (Z = 2.55, $n_c = 3.36$). In this case, the degree of network decomposition in nanoarsenical (and, respectively, the parameters of double- T_g relaxation) is defined by completeness of preliminary alteration from α / β -As₄S₄ phase to metastable pararealgar p-As₄S₃ phase through its intermediate precursor (such as γ -phase As₄S₄).


In As₄S₃-type arsenicals, main amorphization scenario is connected with transition from under-constrained dimorphite-type \times 0-As₄S₃-I molecules (Z = 2.57, n_c -= 2.71) possessing triangle-like configuration in the nearest arrangement of three neighboring homonuclear As-As bonds (as depicted in Fig. 5a) to their triple-bro $ken \times 3$ -As₄S₃-I derivatives. The respective structural transformations separate arsenical matrix on two optimally-constrained sub-networks (both having $n_c = 3.00$) composed of $AsS_{3/2}$ pyramids (Z = 2.40) and over-stoichiometric As-rich As₃S_{3/2} clusters (Z = 2.67) keeping the basal As₃-rings. This amorphization scenario can be only slightly disturbed (if any) by incomplete destroying of As_4S_3 -I molecules owing to single \times 1-breaking in one of S atom positions, thus stabilizing intrinsically uniform but rather under-constrained (in view of $n_c = 2.86$) network with cluster-forming energy approacging $E_f = -4.24$ kcal/mol (see Fig. 9).

Conclusions

Complete hierarchy of network-forming amorphization scenarios in As_xS_{100-x} nanoarsenicals within As_4S_4 - As_4S_3 cut-Sect. ($50 \le x \le 57$) is reconstructed employing materials-computational approach based on *ab-initio* quantum-chemical modeling code (CINCA).

Under nanostructurization caused by external influence such as high-energy mechanical milling, complicated intercrystalline phase transformations towards nanoscopic hightemperature β-As₄S₄ polymorph accompanied by appearance of compositionally-invariant covalent-network amorphous phase are activated in these alloys. General amorphization trend under nanomilling obeys tending from molecular cage-like structures to optimally-constrained covalent networks which are isocompositional to the parent alloy. Optimal topological constitution of amorphous phase generated in nanoarsenicals is ensured by diversity of respective small-ring configurations incorporated in their covalent networks. Contribution of network-forming amorphization pathways in As₄S₄-As₄S₃ nanoarsenicals is defined by their chemistry with higher molecular-to-network transition barriers proper for As₄S₃-rich alloys (more than ~ 2 kcal/mol). The generated amorphous phase is intrinsically decomposed, possessing double glass-transition temperature T_g relaxation due to stoichiometric (x = 40) and non-stoichiometric (x > 40) sub-networks, which are respectively built of AsS_{3/2} pyramids and Asrich entities keeping two separated As-As bonds derived from realgar-type molecules, two neighboring As-As bonds

Fig. 10 Unified potential energy landscape showing diversity of main molecular-to-network amorphization transitions in nanostructured As_4S_4 - As_4S_3 arsenicals, restricted for boundary As_4S_4 (left) and As_4S_3 (right) compositions. The calculated cluster-forming energies

 (E_f) are right-side denoted near energy wells corresponding to molecular clusters and their most favorable network derivatives pointed out by arrows (the atom-averaged topological constraints n_c are indicated)

derived from pararealgar-type molecules and/or three neighboring As-As bonds in triangle-like geometry derived from dimorphite-type molecules. Compositional invariance of nanomilling-derived amorphous phase in As_xS_{100-x} arsenicals within As_4S_4 - As_4S_3 cut-section is ensured by network-forming clusters generated in a growing sequence with average coordination number Z: $(As_2S_{4/2}, Z=2.50) - (As_3S_{5/2}, Z=2.55) - (As_3S_{3/2}, Z=2.67)$. Full diversity of molecular-to-network amorphization pathways in the studied As_4S_4 - As_4S_3 nanoarsenicals is specified on unified potential energy landscape for boundary As_4S_4 and As_4S_3 components.

Acknowledgements The paper is part of scientific research performed within the project No 0119U100357, subject of Scientific Program funded by Ministry of Education and Science of Ukraine (2019-2022).

Data Availability The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- 1. A. Hruby and J. Non-Cryst (1978). Solids 28, 139.
- Z. U. Borisova, Glassy Semiconductors. (Plenum Press, New York, 1981), pp. 1–505.
- 3. A. Feltz, Amorphous Inorganic Materials and Glasses. (VCH Publ, New York, 1993), pp. 1–446.
- A. L. Emelina, A. S. Alikhanian, A. V. Steblevskii, and E. N. Kolosov (2007). *Inorg. Mater.* 43, 95.
- J.-L. Adam, X. Zhang (Eds.), Chalcogenide glasses: Preparation, properties and applications. (Woodhead Publ. Ser. in Electronics and Optical Mater., Philadelphia-New Delhi, 2013), pp. 1–716.
- O. Shpotyuk and M. Hyla (2017). J. Optoelectron. Adv. Mater. 19, 48.
- 7. P. J. Dilda and P. J. Hogg (2007). Cancer Treat. Rev. 33, 542.
- 8. P. Bonazzi and L. Bindi (2008). Z. Ktistallogr. 223, 132.
- O. Shpotyuk, P. Demchenko, Y. Shpotyuk, Z. Bujňáková, P. Baláž, and J. Non-Cryst (2019). Solids 505, 347.

- O. Shpotyuk, P. Baláž, Z. Bujňáková, A. Ingram, P. Demchenko, and Y. Shpotyuk (2018). J. Mater. Sci. 53, 13464.
- P. Chen, C. Holbrook, P. Boolchand, D. G. Georgiev, K. A. Jackson, and M. Micoulaut (2008). Phys. Rev. B 78, 224208.
- 12. H.J. Whitfield (1970). J. Chem. Soc. A, 1800.
- 13. H.J. Whitfield (1973). J. Chem. Soc. Dalton, 1737.
- A. C. Wright, B. G. Aitken, G. Cuello, R. Haworth, R. N. Sinclar, J. R. Stewart, J. W. Taylor, and J. Non-Cryst (2011). Solids 357, 2502.
- T. N. Chattopadhyay, E. Gmelin, and H. G. von Schnering (1983). Phys. Stat. Sol. A 76, 543.
- 16. R. Blachnik and U. Wickel (1984). Thermochim. Acta 81, 185.
- 17. B. G. Aitken and J. Non-Cryst (2004). Solids 345-346, 1.
- S. Soyer-Uzun, S. Sen, B.G. Aitken (2009). J. Phys. Chem. C 113, 6231.
- O. Shpotyuk, P. Demchenko, Y. Shpotyuk, Z. Bujňáková, P. Baláž, M. Hyla, and V. Boyko (2019). *Mater Today Commun* 21, 100679.
- O. Shpotyuk, P. Demchenko, Y. Shpotyuk, S. Kozyukhin, A. Kovalskiy, A. Kozdras, Z. Lukáčová Bujňáková, and P. Baláž (2020). J. Non-Cryst. Solids 539, 120086.
- O. Shpotyuk, S. Kozyukhin, P. Demchenko, Y. Shpotyuk, A. Kozdras, M. Vlcek, A. Kovalskiy, Z. Lukáčová Bujňáková, P. Baláž, V. Mitsa, and M. Veres (2020). *J. Non-Cryst. Solids* 549, 120339.
- O. Shpotyuk, M. Hyla, V. Boyko, Y. Shpotyuk, and V. Balitska (2020). Appl. Nanosci. 10, 4689.
- O. Shpotyuk, M. Hyla, and V. Boyko (2013). *J. Optoelectron. Adv. Mater.* 15, 1429.
- O. Shpotyuk, M. Hyla, and V. Boyko (2015). Comput. Mater. Sci. 110, 144.
- W. J. Hehre, R. F. Stewart, and J. A. Pople (1969). J. Chem. Phys. 51, 2657.
- A. D. McLean and G. S. Chandler (1980). J. Chem. Phys. 72, 5639.
- 27. K. Jackson (2000). Phys Stat Solidi B 217, 293.

- R. Holomb, M. Veres, and V. Mitsa (2009). *J. Optoelectron. Adv. Mater.* 11, 917.
- O. Shpotyuk, A. Ingram, and P. Demchenko (2015). J. Phys. Chem. Solids 79, 49.
- 30. J. C. Phillips and J. Non-Cryst (1979). Solids 34, 153.
- 31. M. F. Thorpe and J. Non-Cryst (1983). Solids 57, 355.
- 32. M. F. Thorpe and J. Non-Cryst (1995). Solids 182, 135.
- 33. T. Ito, N. Morimoto, and R. Sadanaga (1952). Acta Cryst. 5, 775.
- 34. D. J. E. Mullen and W. Nowacki (1972). Zeit. Krist. 136, 48.
- E. J. Porter and G. M. Sheldrick (1972). J. Chem. Soc. Dalton Trans. 13, 1347.
- L. Bindi, G. Pratesi, M. Muniz-Miranda, M. Zoppi, L. Chelazzi,
 G. O. Lepore, and S. Menchetti (2015). *Mineral. Mag.* 79, 121.
- P. Baláž, W. S. Choi, and E. Dutková (2007). J. Phys. Chem. Solids 68, 1178.
- P. Baláž, M. Baláž, O. Shpotyuk, P. Demchenko, M. Vlček, M. Shopska, J. Briančin, Z. Bujňáková, Ya. . Shpotyuk, B. Selepová, and L. Balážová (2017). J. Mater. Sci. 52, 1747.
- O. Shpotyuk, Z. Bujňáková, M. J. Sayagués, P. Baláž, A. Ingram, Ya. . Shpotyuk, and P. Demchenko (2017). *Mater. Charact.* 132, 303
- O. Shpotyuk, A. Kozdras, P. Baláž, Z. Bujňáková, and Ya. . Shpotyuk (2019). J. Therm. Anal. Calorim. 135, 2945.
- P. Bonazzi, S. Menchetii, and G. Pratesi (1995). Am. Mineral. 80, 400
- 42. P. Bonazzi, S. Manchetti, G. Pratesi, M. Muniz-Miranda, and G. Sbrana (1996). *Am. Mineralogist* **81**, 874.
- 43. A. Kyono (2013). Phys. Chem. Minerals 40, 717.
- D. L. Douglass, C. Shing, and G. Wang (1992). Am. Mineralogist 77, 1266.
- 45. K. Trentelman and L. Stodulski (1996). Anal. Chem. 68, 1755.
- M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi (1996). Spectrochim. Acta A 52, 1391.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Oleh Shpotyuk^{1,2} • Malgorzata Hyla¹ · Yaroslav Shpotyuk^{3,4} · Valentina Balitska⁵ · Andrzej Kozdras⁶ · Vitaliv Bovko²

Oleh Shpotyuk o.shpotyuk@ujd.edu.pl; olehshpotyuk@yahoo.com

Yaroslav Shpotyuk yashpotyuk@gmail.com

Valentina Balitska v.balitska@yahoo.com

Andrzej Kozdras akozdras@po.opole.pl

Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15, al. Armii Krajowej, 42200 Czestochowa, Poland

- Department of Optical Glass and Ceramics, Vlokh Institute of Physical Optics, 23, Dragomanova st, Lviv 79005, Ukraine
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho str, Lviv 79017, Ukraine
- Institute of Physics, University of Rzeszow, 1, Pigonia st., 35959 Rzeszow, Poland
- Department of Physics and Chemistry of Combustion, Lviv State University of Life Safety, 35, Kleparivska str, Lviv 79007, Ukraine
- Opole University of Technology, 75, Ozimska str, 45370 Opole, Poland

