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Abstract: This paper is devoted to the development of hydrogen-containing, environmentally safe,
fire-resistant, and corrosion-protected lubricant cooling liquids (LCLs) from vegetable oils with
improved sanitary and hygienic parameters for the machining of parts and equipment made from
high-strength steels for application during the interoperation period in turbine halls. The use of plant
raw materials as ecologically and fire-safe LCLs increased the efficiency of LCLs when evaluating
drilling steel in terms of the dependence of the stability of the cutting tool on the drilling speed.
Chips formed from LCLs during turning had a compact, cylindrical appearance, and the addition of
both water and coolant during turning significantly changed the morphology of the cutting particles.
Using water and LCL intensified the physical and chemical destruction processes. After the use
of water and LCL, the concentration of hydrogen in the cutting products of 38KHN3MFA steel
increased, which indicated its participation in facilitating the destruction during machining. In the
chips formed when using LCL, the amount of hydrogen increased by 2.25 times compared to the chips
obtained with the dry treatment, while with coolants, it increased by 2.6 times, indicating the intense
flow of decomposition products of LCL through diffusion processes in the cutting zone. Hydrogen
reduces the energy costs for the destruction of structural and phase components and promotes their
dispersion. The creation of 2D and 3D images allowed for a more detailed approach to the study of
the influence of LCL on surface treatments.

Keywords: high-strength steels; environment-friendly, green lubricating and cooling liquids;
mechanical treatment; rapeseed; sunflower oils

1. Introduction

The modern, high-alloyed, high-strength steels applied in the energy sector combine
high strength, plasticity, a tendency toward hardening, and low thermal conductivity.
They are very hard to machine. For quality machining of complex alloyed steels, the
use of LCL water emulsion holds great potential. Its advantages include relatively lower
cost, lower toxicity, and much better cooling capacity compared to oil, as well as fire
safety [1–54]. One approach to this complex, technical situation involves using sunflower
and rapeseed vegetable oils for LCL synthesis. To reduce environmental pollution and
workers’ exposure in industry, it is possible to replace petroleum oils with vegetable oils in
the LCL used in technological processes in turbine halls. Ensuring reliable and high-quality
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corrosion protection of machined parts and equipment during and between operations
and simultaneously reducing the temperature and energy mechanical parameters when
machining high-strength, complex, alloyed steels for power generation is an important
topical problem that can be addressed through the development of environmentally safe,
aqueous LCL. The originality of the present study lies in the fact that the microreliefs of
surfaces in connection with the initial microstructure and the obtained cutting products
have not been analyzed for lubricating cooling liquids. The formation of cutting products
is significantly influenced by both technological factors, such as the speed of rotation, and
the physical and chemical characteristics of lubricating coolants. They help increase the
corrosion resistance of products, as well as the shavings themselves, which can be sent
for recycling. If the shavings contain rust, the amount of soot in the shavings during
metallurgical production increases. If the processing is carried out with lubricating fluids
produced on the basis of petroleum oil, there will be more environmental problems during
the processing of chips in comparison to processing chips obtained using ecologically clean
oil.

2. Literature Survey: State of the Art

Recently, the interest of scientists and consumers in the practical use of vegetable oils
as bases and additives for lubricants and mineral oils has increased. To investigate this
possibility, various methods have been used, such as the selection of additives, chemical
modification of vegetable oils, and even genetic modification of plant seeds [1–6].

The investigation of the use of plant raw materials as ecologically and fire-safe LCLs is
an important component of modern scientific research in the USA, South Korea, Malaysia,
India, Ukraine, Turkey, Poland, and other countries [7–95].

Vegetable oils are mainly triglycerides: triple esters of long-chain carboxylic (fatty)
acids with glycerol. Most of these oils contain at least 4, and sometimes up to 12, different
fatty acids. The authors of several publications [1–25] have shown that vegetable oils can
effectively replace petroleum oils in lubricants and confirmed this perspective. In these
studies, attention was paid to castor, rapeseed, soya, palm, and coconut oils.

The use of LCL during metal machining increases the stability of the cutting tool,
improves the quality of the machined surface, and reduces the cutting force. There are
requirements for the quality of LCLs: exertion of a protective effect during inter-operational
storage of parts; no foaming during operation; stability during storage and transportation
and at low temperatures; satisfactory cleaning properties; long service life for water LCLs;
ease of preparation of emulsions in water with different hardness levels; satisfactory
decomposition of the spent solid waste during disposal; environmental safety for the waste;
and fire safety [15,24,96–120].

Oil modification is widely used to improve the operational properties of LCLs. The
most common methods are saponification, methanolysis, and sulfidation of technical
oils [17,19,120–123]. Soap is obtained from castor, rape, and mustard oils. Long and polar
fatty acid chains form oriented molecular films that interact with metal surfaces, reducing
their friction and wear.

During transesterification due to the replacement of acid groups in the ester molecule
or of alcohol groups, this ester is converted into another ester. To obtain a high yield of the
necessary ester, alcohol is added in excess. The advantage of this technique is that it makes
it possible to obtain esters directly from oil without carrying out an intermediate operation.

The most rational methods are the use of vegetable oils as dispersion media and their
soaps as thickeners and the implementation of chemical modifications to obtain effective
anti-wear and protective additives [1–23].

Rotor manufacturing technology involves the turning and drilling of the workpiece,
for which it is necessary to use LCLs [20–23,118–123]. The use of LCLs is also necessary
during planned and emergency repairs after operational damage.

Steam turbine rotors have rotation speeds of 3000 min−1 (RPM) and more. Centrifugal
forces due to the rotation of a massive rotor cause stress in its parts. Solid turbine rotors,
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blades, shafts, and disks are the most loaded elements of turbines. As the turbine unit power
increases, the loads on all its parts and components increase and, thus, the requirements
for the steels and alloys from which they are made increase.

The high degree of alloying of steels and alloys has a significant impact on their machin-
ability due to the formation of dispersed phases based on alloying elements, strengthening
solid solutions, and structure components: carbides, nitrides, and intermetallic compounds.
Furthermore, the development of modern information technologies has had a significant
impact on the paradigm employed in modern research on the mechanical processing of
materials [107–145].

3. Formulation of the Problem: Materials and Methodology

For research, three LCL samples were chosen: ET-2 petroleum oil (LCLo) and newly
synthesized LCLs based on sunflower (LCLs) and rapeseed (LCLr) oils.

Transesterification is carried out using methyl or ethyl alcohols that can form complex
esters. We used amino alcohol (TEA) as an alcohol and adjusted the reaction conditions
accordingly. The transesterification reaction of TEA with sunflower (rapeseed) oil was
carried out in the presence of a solution of potassium hydroxide (KOH). The reaction
proceeded gradually as follows: (1) oil triglycerides were saponified with KOH; (2) TEA
hydrolyzed and saponified the oil triglycerides; and (3) alcoholysis of TEA oil triglycerides
occurred in the presence of a catalyst—methyl alcohol in component mass ratios from 4:1
to 5:1 at temperatures from 95 to 125 ◦C. Samples of LCL concentrates were obtained by
modifying vegetable oils as follows. Calculated amounts of oil, TEA, 35–45% potassium
hydroxide, and methyl alcohol were sequentially loaded into a flask equipped with a
stirring and heating device. With continuous stirring, the reaction mixture was heated to
95–125 ◦C over 2–4 h and appropriate amounts of neonol A9-4 and sunflower oil were
added. Everything was stirred for 1–2 h and analyzed.

The LCLs for testing were prepared in two stages: preparation of the water and mixing
of the concentrate with water. For the LCL tests, a 3% emulsion was prepared by mixing
the concentrate in appropriate proportions with mineralized water with a hardness of
7 mg-eq/l, which was prepared by dissolving 600 mg of magnesium sulfate (hemihydrate)
and 124 mg of calcium chloride (anhydrous) in 1 L of distilled water. The physicochemical
characteristics of the LCLs were determined (appearance, pH, aggregate stability, density).

The appearance of the samples was assessed visually—they appeared as homogeneous
liquids, beige in color. All the LCL samples presented specific, non-irritating smells of the
corresponding oils, as determined organoleptically.

The effectiveness of the LCLs based on synthesized concentrates was evaluated in
terms of the influence of a working fluid with a mass fraction of 3% of the concentrate on
the performance of mechanical processing (drilling speed) and on tool wear (total depth of
the drilled holes before the tool became blunted).

For the determination of the marginal wetting angles of the liquids, quantitative
evaluation of the effects of the LCLs on wetting was carried out by changing the marginal
wetting angles [22–24]. The sample, which was made of 38KHN3MFA steel in the form of a
plate (1.5 × 2.0 cm2) with a surface roughness of 0.63 µm, was placed on a stage, the height
of which was adjusted with the help of a screw to bring it to the level of the focus of the
camera.

Mineralized water (hardness: 7.0 mg-eq/L), LCLo, and the synthesized LCLs were
compared. A drop of the studied liquid (with a diameter of no more than 3 mm) was
applied with a syringe to the prepared surface of the sample, holding the syringe at an
angle of 15 to 25◦ from the surface. The drop was photographed and the image was
processed using the Dopel Illustrator program, and then the angle was measured and its
cos determined.

The postoperative protective effect was evaluated from the appearance (presence of
traces of corrosion) of the 38KHN3MFA steel chips after turning in water and the LCL
following 100 h of storage in a desiccator with water.
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The efficiency of the LCLs when drilling steel was evaluated by establishing the
dependence of the stability of the cutting tool on the drilling speed. When drilling, we
used drills made of high-speed P6M5K5 steel alloyed with 5% cobalt (HSS COBALT DIN
338 manufactured by IRVIN, Germany). The cutting surface of the drills was ground at an
angle of 135◦.

Samples of 38HN3MFA steel in the delivery state (the initial state condition) with a
hardness of 35 HRC were investigated (Tables 1 and 2) [23].

Table 1. Chemical composition of steels (wt., %, Fe—balance).

Steel C Si Mn Cr Ni P S V Mo Cu

38KhN3MFA 0.39 0.26 0.48 1.30 3.20 0.008 0.003 0.15 0.42 0.23

Table 2. Mechanical and physical properties of steels.

Steel Yield Strength,
σТ, MPa

Ultimate Tensile
Strength, σТ, MPa Elongation, δ, % Reduction in

Area, ψ, %

Fracture
Toughness КIс,
MPa

√
m

38KhN3МFA 807 955 17 51 184

The chips were obtained by cutting cylinders with a diameter of 28 mm and a thickness
of 4 mm from the workpiece. The cutter was equipped with a VK-6 carbide insert. To create
equal turning conditions, the cutter was sharpened and the same angle between it and the
workpiece was used. Experiments were carried out dry during grinding with water and
coolant containing sunflower oil at 200 and 315 RPM.

The microstructure parameters of the steel were determined with a LOMO ES METAM
RV 21 microscope. To obtain micro-grinds, etching was used with 4% nitric acid solution.
The features of the chip morphology were studied with a ZEISS Stemi 2000C microscope.
This microscope was equipped with a SIGETA International Color Digital Camera MCMOS
5100 5.1 MP.1. An EVO-40XVP electron microscope with an INCA Energy 350 Microanalysis
System was also used. The Gwyddion software packages were used to build images of the
2D and 3D surfaces. The computer software packages Gwyddion 2.61 and 2.62 are freely
downloadable as open-source code [28]. The most popular versions of these computer
packages are versions 2.2 and 2.5, and the developers are Petr Klapetek and David Nečas.
The installation file is called gwyddion.exe. The latest version of this computer program
can support both 32 bit and 64 bit Windows XP/Vista/7/8/10/11 operating systems.
Gwyddion is a modular computer program that can be used for scanning probe microscopy
(SPM) data analysis and visualization. The computer program is intended for analysis
of height fields, which are obtained with scanning probe microscopy methods (STM,
SNOM/NSOM, MFM, AFM). However, in principle, this program can be used to analyze
any kind of elevation field or image; for example, profilometry data. The hydrogen
concentration in the chips was determined using an ONH-836 Leco analyzer as described
in [21].

4. Results and Discussions

LCL tests were performed on 38KHN3MFA rotor steel samples with the typical mi-
crostructure (Figure 1). For the microstructure investigation (determination of the area and
the length of the structural components) the adequate program was used [29].
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Figure 1. The microstructure of the 38KhN3MFA steel sample (initial state condition) (a) and the
appearance of the ImageJ program dial window (b) (the area of the pearlite structural component is
shown in red).

Analysis of the histograms (Figure 2) showed that the area distribution of ferrite
colonies was in a range (Figure 2a) from 0 to 1000 pixels2, and the maximum value of the
distribution curve was 125 pixels2. For pearlite colonies, the largest area was occupied by
colonies with areas of up to 2000 pixels2 (Figure 2b). The maximum value of the distribution
curve was 1600 pixels2. The length distribution of ferrite colonies was between 1 and 20 µm
(Figure 2c), with the maximum value of the distribution curve at 7.5 µm. For the pearlite
component, from 10 to 40 µm (Figure 2d), the maximum value of the distribution curve
was 18 µm.
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When studying the effects of LCL on the mechanical processing of 38KhN3MFA steel,
it was necessary to take into account the angle of wetting of the steel surface by the drops of
LCL. This LCL measurement makes it possible to assess the wettability of the surface with
a liquid and, accordingly, its ability to penetrate into the zone of mechanical processing.
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The penetration of LCL depends on its nature and can lead to passivation or increased
corrosion of steel. In this case, mechanical processing was greatly facilitated due to the
cooling of the surfaces and the formation of a film that separated the processed surfaces.
The marginal wetting angles of LCLs, LCLr, and LCLo at T = 293 K with 38KHN3MFA steel
were determined according to the methodology. For one of the LCLs (Figure 3), the wetting
angle was almost three times smaller than the wetting angle of water, and that of LCLr was
1.75 times smaller, allowing significant permeability into the treatment zone.
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The postoperative protective effect of LCLs, assessed by the appearance of the chips—
the “indicator”—after 100 h (absence of traces of corrosion on the chip, Figure 4) following
turning confirmed the reliability of its protective action [30,141,145].
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Figure 4. View of steel chips following turning in LCLs (a) and water (b) after 100 h.

The small angle of wettability of the LCLs with the steel surface ensured better pene-
tration into the processing zone and verified the protective effect of 38KHN3MFA steel.

When turning a sample of 38KHN3MFA steel, the amount of tool wear decreased
by a factor of almost 2 when LCLs and LCLr were used for 10 min compared to LCLo
(Figure 5a), and when changing the chemical composition of LCLo to that of LCLs or LCLr
at a concentration of 3%, the duration of the drilling of the steel samples increased by 60%
(Figure 5b).

The estimation of the resource change in the tool during drilling and the precision of
the 38HN3МFA steel samples indicated that, depending on the liquid used (Figure 5b),
increases in LCLs and LCLr concentrations by 2.5 times led to an increase of only 11%.
Therefore, LCLs increased the durability of the tool when turning and drilling 38KHN3MFA
steel by ~1.6 times and 60%, respectively.

The fire-resistant 3% aqueous LCLs and LCLr obtained on the basis of the TEA trans-
esterification reactions of triglycerides of sunflower and rapeseed oils facilitated turning
and drilling processes with 38HN3MFA steel and provided protection for the parts against
corrosion in the interoperation period after processing.
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Figure 5. Dependence of the tool wear on the duration of the turning of 38KhN3МFA steel: (1) dry,
(2) water, (3) LCLo—3%, (4) LCLr—3%, (5) LCLs—3%. Turning mode: workpiece diameter—25 mm;
speed—200 rpm, feed—0.53 mm (a). Dependence of the duration of the drilling of 38KHN3MFA steel
on the composition of LCL: (1) LCLo—3%; (2, 4, 6) LCLs—2%, 3%, and 5%; (3, 5, 7) LCLr—2%, 3%,
and 5%. Drilling modes: drill with a diameter of 12.7 mm; number of revolutions—180 rpm (b).

In Table 3, the values for the roughness and hydrogen content in the chips are given.
Figure 6 shows the cutting surfaces with dry cutting conditions and with water when using
LCL containing rapeseed and petroleum sunflower oil.

Table 3. Effects of cooling media on surface roughness of steel samples and hydrogen content in
chips after turning.

N Experiments Rz CН (ppm)

1 Air 37.08 0.88

2 Water 5.01 3.14

3 LCLs 4.43 7.22

4 LCLr 5.52 7.47

5 LCLo 6.36 7.83
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As can be seen from Table 3, the highest roughness was observed for dry cutting. The
use of water significantly reduced the roughness. However, the use of water for this steel
also led to the appearance of corrosion damage (Figure 6b). To prevent the occurrence of
corrosion processes and their development, it is advisable to use LCLs.

Figure 6 shows the surfaces of the samples after dry turning and turning with wa-
ter, where the squares mark the areas with which 2D and 3D surface visualization was
undertaken.

The surface with the highest roughness Rz = 37 µm was formed during dry cutting
(Table 3, Figures 6a and 7a,b). Figure 4b shows the corrosion damage on the surface after
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turning with water. Cutting with water and LCL improved the machined surface and
significantly reduced roughness (Rz = 4–7 µm).
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Figure 7. Dry cutting surfaces of 38KHN3MFA steel samples: 2D visualization (a) and 3D visualiza-
tion (b) in the Gwyddion computer package.

Comparing Figure 7a,b and Figure 8a,b makes it possible to see that, during dry
cutting (Figure 5a), there were “deep tears” (blue color). In Figure 6b, it can be seen that
the surface layer was more uniform and did not have deep eddies. The average surface
roughness during dry processing was 37 µm (Table 1). For the surface treatment with
water, most of the surface is shown in orange colors and the roughness was in the range
from 2 µm to 6 µm, with an average roughness of 5 µm (Figure 8a); that is, most of the
treated surface, in contrast to the dry treatment, did not show the same differences and
aggravation. The Gwyddion 2.61 computer package has downloaded from the following
website: http://gwyddion.net/download.php (accessed on 27 November 2022). We did
not develop any additional algorithms when using this package. The developers of this free
software are David Nečas and Petr Klapetek. The installation file is named gwyddion.exe.
The latest version of the program is supported by Windows XP/Vista/7/8/10/11 and can
be used for both 32 and 64 bit computer systems.
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Gwyddion is a modular computer program for visualization and analysis of scan-
ning probe microscopy (SPM) data. It is intended mainly for analysis of height fields
obtained with scanning probe microscopy methods (AFM, SNOM/NSOM, STM, MFM).
Its advantage is that it can also be used to analyze any other kind of height field or
image; for example, profilometry data (http://gwyddion.net (accessed on 25 Decem-

http://gwyddion.net/download.php
http://gwyddion.net


Energies 2023, 16, 535 9 of 25

ber 2022)). Tutorials on how to use different versions of Gwyddion can be found at at:
http://gwyddion.net/presentations/tutorials.php (accessed on 25 December 2022). [26].

As shows the XVP scanning electron microscope data and indicates a positive ef-
fect from LCLs and LCLr on the machining quality of 38KhN3MFA steel samples after
sharpening with the LCLs (Figure 9).
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Figure 9. Surfaces of 38KhN3MFA steel samples after turning during LCL cutting (selected areas for
visualization—800 from 800 µm): LCLs (a); LCLr (b); LCLo (c).

Areas from which the reconstructions of 2D and 3D surfaces were produced, taking
into account the value of the surface roughness, are marked in yellow. From Figures 10–12,
it can be seen that cutting with LCLs and LCLr resulted in a smoother and more “even”
surface. The roughness was in the range of 4.4 to 6.5 microns. The color ranges for LCLs
and LCLr were more uniform (Figures 10a and 11a) than for LCLo, where, in addition
to green and blue colors, there were red and yellow colors (Figure 12a). To reproduce
the microrelief of the surface treated with LCLs, a smooth surface with a small difference
in roughness corresponding to −1 µm to +2 µm (shown in green color with the largest
peaks corresponding to +2 µm) was obtained, and the blue surface corresponds to −3.0
to −6.0 µm (Figure 10a,b). The color ranges for LCLs and LCLr were more uniform
(Figures 10a and 11a) than for LCLo, where, in addition to green and blue colors, there were
red and yellow colors (Figure 12a). The largest peaks during processing with LCLr reached
sizes of up to +7 µm and were distributed over the entire surface very evenly (Figure 11a,b).
The microrelief of the reverse surface in the left part of the image was in the range from
−2 µm to +2 µm and had a more or less uniform distribution, indicated by the green color
scale. The right part of the image is shown in blue-green colors, which correspond to−2 µm
to −5 µm. The petroleum oil in the composition of LCLo contributed to the appearance
of a sharper microrelief (Figure 12), where there were areas with protrusions that had a
sharp shape (Figure 12b). The central ridge had external elevations from +3 to +7 microns
(Figure 12) and a large number of single peaks between −2 and +6 microns. On both sides
of the ridge, there were depressions ranging from −2 to −7 microns scattered over the
entire area. For the selected areas after treatment with sunflower and rapeseed oils, the
numbers of dense peaks (Figures 10b and 11b) were significantly smaller.

The largest amount of hydrogen, which was obtained after the analysis of the chips,
was recorded for LCLo (Cн = 7.83 ppm). An increase in the amount of hydrogen can also
contribute to the processes of destruction of the surface and subsurface layers under cutting
conditions.

Transitions to alloys in which the area of pearlite prevails over the ferrite component
lead to the production of shorter chips, which is due to the strengthening of the metal
matrix and the increase in the number of grains and alloyed carbide phases. The number of
fracture chips also increases; i.e., macrocracks do not develop as intensively as for alloys
where ferrite occupies a larger area than pearlite [27].

http://gwyddion.net/presentations/tutorials.php
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Figures 13 and 14 shows graphs of changes in surface roughness depending on the
change in the average size of the ferrite colonies. The experiments were carried out on
38KhN3MFA steel samples (see Tables 1 and 2). The following trend was observed: the
finer the grain size, the lower the surface roughness.
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Figure 14. Influence of ferrite colony size on the surface roughness of 38KhН3МFA steel under
lubrication conditions.

Samples where the area of the pearlite component was dominant had finer chips
than those samples where ferrite was the dominant component. According to established
ideas, a macrocrack forms in front of the cutter and, because of the increased brittleness of
the alloy, much finer chips are produced. When using water and LCL, physicochemical
processes of destruction occur that affect the morphology of the chips. The chips become
more compact and take on a rounded shape. Since ferrite belongs to the plastic phase and
pearlite to the brittle phase, the correction of the structural-phase alloy affects the numbers
of brittle- or viscous-type fractures.

Figures 15–17 show the image of chips formed during the turning of 38KhН3МFA
steel in various environments. Some fragments of the chips obtained during dry turning
contained varying colors (Figure 15a,b), which indicated the occurrence of oxidation pro-
cesses due to an increase in temperature. When using water and LCL, the number of such
chips was significantly reduced.

Chips formed during turning with water demonstrated local corrosion damage, as
well as cracks and cuts, both on the inner and outer sides (Figure 16a,b). The appear-
ance of corrosion damage on the surface of the chips was recorded immediately after the
experiment. Cracks were observed on the chips, the banks of which showed corrosion
damage.

Under the influence of a corrosive environment, the growth and propagation of cracks
intensified. The chips formed during turning with LCLs had a compact cylindrical appear-
ance (Figure 17a,b). The addition of both water and coolant during turning significantly
changed the morphology of the cutting particles: they were crushed, and a large number of
spiral-shaped particles with local deformation that were elongated along the axis appeared.



Energies 2023, 16, 535 12 of 25Energies 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

(a) (b) 

Figure 15. Chips generated during dry turning (demonstrating varying colors): outside (a); inside 
(b). 

 
(a) (b) 

Figure 16. Chips formed during turning with water (demonstrating corrosion damage): outside (a); 
inside (b). 

 
(a) (b) 

Figure 17. Chips formed during turning with LCLs: outside (a); inside (b). 

Chips formed during turning with water demonstrated local corrosion damage, as 
well as cracks and cuts, both on the inner and outer sides (Figure 16a,b). The appearance 
of corrosion damage on the surface of the chips was recorded immediately after the ex-
periment. Cracks were observed on the chips, the banks of which showed corrosion dam-
age. 

Under the influence of a corrosive environment, the growth and propagation of 
cracks intensified. The chips formed during turning with LCLs had a compact cylindrical 
appearance (Figure 17a,b). The addition of both water and coolant during turning 

Figure 15. Chips generated during dry turning (demonstrating varying colors): outside (a); inside
(b).

Energies 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

(a) (b) 

Figure 15. Chips generated during dry turning (demonstrating varying colors): outside (a); inside 
(b). 

 
(a) (b) 

Figure 16. Chips formed during turning with water (demonstrating corrosion damage): outside (a); 
inside (b). 

 
(a) (b) 

Figure 17. Chips formed during turning with LCLs: outside (a); inside (b). 

Chips formed during turning with water demonstrated local corrosion damage, as 
well as cracks and cuts, both on the inner and outer sides (Figure 16a,b). The appearance 
of corrosion damage on the surface of the chips was recorded immediately after the ex-
periment. Cracks were observed on the chips, the banks of which showed corrosion dam-
age. 

Under the influence of a corrosive environment, the growth and propagation of 
cracks intensified. The chips formed during turning with LCLs had a compact cylindrical 
appearance (Figure 17a,b). The addition of both water and coolant during turning 

Figure 16. Chips formed during turning with water (demonstrating corrosion damage): outside (a);
inside (b).

Energies 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

(a) (b) 

Figure 15. Chips generated during dry turning (demonstrating varying colors): outside (a); inside 
(b). 

 
(a) (b) 

Figure 16. Chips formed during turning with water (demonstrating corrosion damage): outside (a); 
inside (b). 

 
(a) (b) 

Figure 17. Chips formed during turning with LCLs: outside (a); inside (b). 

Chips formed during turning with water demonstrated local corrosion damage, as 
well as cracks and cuts, both on the inner and outer sides (Figure 16a,b). The appearance 
of corrosion damage on the surface of the chips was recorded immediately after the ex-
periment. Cracks were observed on the chips, the banks of which showed corrosion dam-
age. 

Under the influence of a corrosive environment, the growth and propagation of 
cracks intensified. The chips formed during turning with LCLs had a compact cylindrical 
appearance (Figure 17a,b). The addition of both water and coolant during turning 

Figure 17. Chips formed during turning with LCLs: outside (a); inside (b).

The lower parts of the chips (Figure 17a) had a smaller diameter (2.43 mm) than the
upper parts (3.29 mm). The arrows in Figure 17b show the damage on the surface of the
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chips, which appeared in semi-cylindrical, not completely closed shapes and had widths of
0.36 to 1.1 mm.

Chip curling is an important safety factor for service personnel in machining.

5. Fire Security when Applying LCL in Turbine Halls according to EU
Normative Requirements

Due to the incidence of ruptures in rotors and retaining rings caused by accidents, it is
necessary to improve the safety of repair procedures in the turbine halls of energy units.
For example, in one instance, a fragment of a hydrogen-cooled TG retaining ring pierced
the fiberglass cylinder, as a result of which transformer oil began to flow under pressure
into the gap between it and the rotor, which caused the formation of an air–hydrogen–oil
mixture and the occurrence of a hydrogen fire with an explosion. One of these cracks,
having reached a critical size, led to the instantaneous brittle failure of the generator shaft
along the fan seat flange. This caused the processional movement of the TG rotor and the
appearance of additional braking and transverse forces in the medium-pressure and low-
pressure cylinders of the turbine, which resulted in shaft separation. Thus, the hydrogen-
cooled TG was completely destroyed, and the rotor shaft was divided into four parts.
Increasing turbine- and machining-hall safety by using fire-resistant hydrogen-containing
lubricating and cooling liquid for mechanical treatment of high strength steels involves
various technological processes, such as removing the rotor from a TG (Figure 18a,b); NDT
testing of damaged TG rotors (Figure 18c) and the damaged outer (Figure 18d) and inner
(Figure 18e) surfaces of retaining rings; application of fire-resistant LCL in the TA during
repair (Figure 18e) with possible increased hardness (Figure 18g,h); and the assembly of
hydrogen-cooling channels (Figure 18i) and retaining rings after repair (Figure 18j) [93].
The advantage of the use of LCL from vegetable oils is their rapid biodegradation in natural
conditions; in contrast to petroleum oils, this makes it possible to reduce environmental
pollution and increase fire and explosion safety.
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ring, LCL applied in the TA during repair (e) with increased hardness (g,h), and the assembly of
hydrogen-cooling channels (i) and the retaining ring after repair (j) [41,82,84,142,144].

In addition, knowledge about the regulations and standards, as well as the risks,
associated with the operation of hydrogen devices for hydrogen-cooled TAs should enable
the safe launch of TG hydrogen-cooling systems and their further operation. The most
important documents on this subject are the European directives ADR-2019 (concerning
the conditions for the safe transport of hydrogen), ATEX-2014 (concerning threats in areas
affected by hydrogen fires and hydrogen explosions and safe distances from objects), and
PED-2014 (concerning the operation of tanks and their pressure), based on which the effi-
ciency and safety of TG hydrogen-cooling system infrastructure can be improved [125–176].

Many countries in the European Economic Area require pressure equipment man-
ufacturers selling their products in their territory to comply with the requirements of
the Pressure Equipment Directive (PED 2014/68/EU). The PED contains a set of basic
requirements for pressure equipment. They relate to the pressure range and volume of the
gaseous or liquid medium for which the device is designed. The PED does not instruct
manufacturers how to meet these requirements but gives them the freedom to achieve
compliance through a number of different production standards. All equipment subject
to the PED is assigned to one or more risk categories. After determining which category
the equipment belongs to, it is assigned the appropriate conformity assessment module
or modules, which define the level of quality assurance and the degree of third party
involvement, including: product inspection, testing, and certification; material approval;
design study; type examination; approval of the quality system; approval of personnel and
procedures; and approval of NDT qualifications of personnel.
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Over the past 40 years, more than 100 incidents have been recorded among hydrogen
energy companies, including 30 hydrogen fires, hydrogen explosions, and fire explosions
that resulted in casualties. The equipment failures that were accompanied by hydrogen
leakage were as follows: leakage through the flange connections of the fittings and the
pipeline with hydrogen pressure tanks (up to 20%); squeezing out from rubber gaskets
(housing flanges, covers) between the seal housing and the outer casing, etc., including
hydrogen ignition (up to 20%); breakdown through the float’s hydraulic seal (e.g., ignition
in the bearing drain pipes) (up to 10%); self-ignition and leakage of hydrogen at the sharp
opening of the valve at the refueling station (up to 10%); leakage through the sealing of
rubber gaskets and leakage from or cracks in the bearing housing (including due to damage
to the sealing insert) (up to 9%); leakage through the tanks under hydrogen pressure and
the welded joints of pipelines (up to 6%); and leakage through the horizontal joints of the
end shields (up to 3%). The rate of hydrogen leakage that was accompanied by ignition or
“clapping” of hydrogen was approximately 15%.

Examples of hydrogen explosions that may have been of external origin include
Fukushima-1, Japan, 1100 MW, 2011; Muehleberg, Switzerland, 355 MW, 1971; Fort St.
Vrain, USA, 160 MW, 1987; Ignalina, Lithuania, 1988; Maine Yankee, USA, 900 MW, 1991;
Brunsbuettel, Germany, 806 MW, 2001; Hamaoka-1, Japan, 540 MW, 2001; Seabrook-1,
USA, 1200 MW, 2003; Yankee 1, USA, 530 MW, 2004; Cattenom-2, France, 1360 MW, 2004;
etc. [117–144].

In accordance with the requirements of Directive 2014/34/EU (ATEX), manufacturers
are fully responsible for the compliance of hydrogen installation products. This applies
to both products manufactured individually and for private use. The technical solutions
implemented by manufacturers are subject to the safety requirements contained in Directive
2014/34/EU and harmonized standards pertaining to their design and the mandatory
assessment of compliance with regard to the essential safety and construction of devices
intended for use in potentially explosive atmospheres.

This applies to all explosion-proof products, including non-electrical (hydrogen) equip-
ment, electrical equipment, safety devices, components (formerly parts and subassemblies),
regulation and control devices, and protective systems. Protective systems and equipment
used in potentially explosive hydrogen atmospheres must be properly designed.

One of the implementations of the device-assessment process in the field of safety
measure selection and one of the main streams of activity in the field of technical safety is
the preparation of product documentation and the carrying out of the necessary analyses.
A detailed analysis of compliance with the requirements of directives and documentation is
carried out and includes completeness assessment, consultations on the selection of appro-
priate safety measures in potentially explosive atmospheres (EX), ignition risk assessment
for non-electrical devices, necessary tests, product certification (ATEX), and full assessment
of the internal control system in the production process.

The explosion at the Muskingum power plant highlights the importance of the safe
design and construction of equipment and the proper management of hydrogen to prevent
loss of life and property in power plants. During the explosion, the hydrogen pumping
device failed, which allowed the hydrogen content in the tank to decrease and ignite.
Hydrogen is used at Muskingum (and at other power stations) to cool the generator block.

Hydrogen is no more or less hazardous than other combustible materials, including
natural gas and gasoline (according to the Hydrogen Safety Fact Sheet jointly published by
the Hydrogen Association and the Office of the US Department of Energy Efficiency and
Renewable Energy).

In fact, some of the differences specific to hydrogen provide safety benefits compared
to gasoline or other fuels. However, all combustible materials must be handled responsibly.
As with natural gas and petrol, hydrogen is highly flammable and can be dangerous
under certain conditions. However, hydrogen can be safely handled when simple rules are
followed and the user understands its characteristics [20,21,83–86,110–132].
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Comparing hydrogen with other flammable materials, it is lighter than air and diffuses
quickly—3.8 times faster than natural gas—which means that when it is released, it is
quickly diluted to a non-flammable concentration.

Hydrogen rises at a speed of nearly 70 km/h, which is twice as fast as helium and
six times faster than natural gas. Therefore, if a roof, poorly ventilated room, or other
structure is trapping floating gas, the laws of physics prevent hydrogen from stagnating
in the vicinity of the leak (or in the vicinity of people using hydrogen-filled equipment).
Simply put, for a fire to occur, hydrogen must first be collected at a high concentration,
but since hydrogen is the lightest element in the universe, it is very difficult for this to
happen. Hydrogen structures help it to float up and away from the user in the event of an
unexpected release.

Hydrogen is odorless, colorless, and tasteless, so human senses cannot detect any
leakage. However, given the tendency for hydrogen to float rapidly, indoor hydrogen
leaks briefly accumulate under the ceiling and eventually travel to corners. Due to this
and other reasons, the industry often uses hydrogen sensors to detect hydrogen leaks and
has maintained a high level of safety for decades. During combustion, hydrogen primarily
produces heat and water. Due to the lack of carbon and the presence of heat-absorbing
water vapor formed during the combustion of hydrogen, a hydrogen fire involves much
less thermal radiation compared to a hydrocarbon fire.

Since hydrogen fires radiate heat near the fire (the flames themselves are just as hot),
the risk of secondary fires is lower. As with any flammable substance, hydrogen can
burn. However, hydrogen displacement, along with its diffusion coefficient and small
molecular size, makes it difficult for it to concentrate and create a combustible situation.
For a hydrogen fire to occur, the appropriate concentration of hydrogen, an ignition source,
and an appropriate amount of oxidant (e.g., oxygen) must be present.

Hydrogen has a wide flammability range (4% to 74% in air) and the energy required
to ignite hydrogen (0.02 MJ) can be very low. However, at low concentrations (below
10%), the energy required to ignite hydrogen is high—analogous to the energy required to
ignite natural gas and gasoline in the respective flammability ranges. Hydrogen is, in fact,
difficult to ignite at concentrations close to its lower flammability limit.

An explosion cannot occur in any enclosed space or container containing only hydro-
gen atoms. An oxidizing agent, such as oxygen, must be present at a concentration of 21%
for air (volume fraction) or at least 10% for pure oxygen. Hydrogen can be explosive at
concentrations from 18.3% to 59%. While this range is wide, gasoline can be more danger-
ous than hydrogen, as there is a risk of gasoline exploding at much lower concentrations:
1.1% to 3.3%. It is also very unlikely that hydrogen will escape from a container due to its
tendency to volatilize rapidly. This is the opposite of what we see with heavier gases, such
as gasoline or propane fumes, which float near the surface of the earth, creating an even
greater risk of explosion.

With the exception of oxygen, any gas can cause suffocation. In most cases, buoyancy
and hydrogen diffusion are unlikely to be restricted in situations where asphyxiation can
occur.

Hydrogen is completely non-toxic. It does not pollute groundwater (it is a gas under
normal atmospheric conditions) or the atmosphere when released. Hydrogen does not
form “steam” (“vapor”).

Following the power plant accidents, hydrogen supplies have been limited to delivery
of only 2100 psi of hydrogen to sites (compared to the typical 2400 psi), and manufacturers’
employees are now supervised by AEP personnel using a special procedure that assesses
safety at work. AEP has also made other changes to the operation of the plant to ensure
there are no more hazardous incidents on site. Relief valve systems are used. Hydrogen
cylinders have been moved away from the space occupied by people, and the structure is
protected against sources of ignition and vehicle entry.

A working group from the International Council on Large Electric Systems (CIGRE)
estimated that more than 40,000 hydrogen-cooled turbogenerators could be in operation
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worldwide. Despite the large number of systems using pressurized hydrogen to cool
generators, most experience few incidents or problems. Given the inherently hazardous
properties of hydrogen, plant personnel working with this combustible material must
regularly check both the equipment and handling procedures to ensure that there are no
problems [110–175].

Modern hydrogen tanks designed and manufactured in accordance with previous
editions of standards and regulations for gas tanks for motor vehicles, which were approved
at the time the vehicles were homologated, can still be used when the gas fuel storage
systems are tight and show no signs of external damage that may affect their security. If the
hydrogen storage systems are not tight, are overfilled, or have suffered damage that might
affect their safety, they should, in accordance with the ADR, only be used in emergency
pressure receptacles. If a hydrogen fuel storage system is equipped with two or more
valves arranged in series, the two valves should be closed so as to be tight under normal
conditions of carriage. If only one valve is functioning properly, all openings, with the
exception of the pressure relief device, should be closed so as to be tight under normal
conditions of carriage. Hydrogen gas fuel storage systems should be transported in such
a way that they are protected against the jamming of the pressure relief device, against
any damage to valves or other pressurized parts of the gas supply, and against accidental
release of gas under normal conditions of carriage. Gas fuel storage systems should be
secured against shifting or vertical displacement.

In order to make modern gas fire suppression systems more widely applicable, further
research is needed in future work. Only small cracks were considered in this study. If
doors or windows are open, the size of the opening can significantly affect the flow of
the air–aggregate mixture. It should also be taken into account that a permanent ignition
source can cause a renewed fire if fresh air can enter the enclosure through openings or
cracks. Computer neural networks and artificial intelligence systems, such as Generative
Pre-Trained Transformer 3 (GPT-3), could be used in further research.

6. Conclusions

It was established that corrosion protection through the application of fire-resistant
LCLs resulted in increases in tool life when turning and drilling 38KHN3MFA steel by
~1.6 times and by 60%, respectively.

Evaluation using the appearance of chips as an “indicator” after 100 h following
turning confirmed the reliability of the postoperative protective effect of LCL against
corrosion.

When using water and LCL, physical and chemical destruction processes occur that
affect the morphology of the chips. The chips become more compact and acquire a rounded
shape. Since ferrite belongs to the plastic phase and pearlite to the brittle phase, the
adjustment of the structural-phase alloy affects the amounts of brittle or ductile fracturing.

After the use of water and LCL, the concentration of hydrogen in the cutting products
of 38KHN3MFA steel increased, which indicated its participation in facilitating destruction
during machining. In the chips formed when using LCL, the amount of hydrogen increased
by 2.25 times compared to the chips obtained with the dry treatment, while treatment with
coolants resulted in an increase of 2.6 times, indicating an intense flow of decomposition
products of LCL through diffusion processes in the cutting zone. Hydrogen reduces energy
costs for the destruction of structural and phase components and promotes their dispersion.

The creation of 2D and 3D images allowed for a more detailed approach to the
study of the influence of LCL on surface treatment. In order to make modern approaches
to increasing turbine-hall fire safety using suppression systems more widely applicable,
computer neural networks and artificial intelligence systems, such as Generative Pre-trained
Transformer 3 (GPT-3), can be used.
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Abbreviations

LCL lubricating cooling liquid
LCLo lubricating cooling liquid based on petroleum oil
LCLs lubricating cooling liquid based on sunflower oils
LCLr lubricating cooling liquid based on rapeseed oils
σu ultimate tensile strength (UTS)
σ0,2 yield strength (YS)
δ elongation
ψ reduction in area
CH hydrogen concentration
ppm parts per million
RPM rotations per minute
TA turboaggregate (turbine + turbogenerator)
TG hydrogen-cooling turbogenerator
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