
Expert Decision Support System Modeling in
Lifecycle Management of Specialized Software

Yuliia Kordunova[0000−0003−0151−8285], Oleksandr
Prydatko[0000−0002−0719−9118], Olga Smotr[0000−0003−2767−5019], and Roman

Golovatyi[0000−0002−7895−9321]

Lviv State University of Life Safety, Lviv, Ukraine
{kordunovayulia,olexandrprydatko,olgasmotr,romangolovatiy}@gmail.com

Abstract. The paper describes the complexity of the short-term plan-
ning process in lifecycle management of specialized software. The crit-
ical stages of sprint scope planning in projects, which works by Agile
models were explored. Network planning methods have been adapted to
determine the critical indicators in lifecycle management of specialized
software. An algorithm for automated construction of a network model
and its representation in PC memory is proposed, as a data structure.
Based on it, algorithms for constructing and traversing graphs of the
network model, determining early and late execution time, and deter-
mining the critical execution path and time reserves are proposed. De-
veloped algorithms for constructing and traversing graphs of the network
model to automate the calculation of its parameters will be embedded in
the work of the expert decision support system in lifecycle management
of specialized software. The developed expert system will allow making
operative decisions on re-planning of duration and the maintenance of
project works in real-time. The system was developed using the Java
programming language. The results of the system are presented in the
development environment IntelliJ IDEA.

Keywords: software lifecycle management, Agile, sprint planning, net-
work graphs

1 Introduction

It is known that the software development process includes many important
stages: requirements analysis, planning, design, development and programming,
testing, support and operation [10]. One of the crucial stages of development is
planning, because at this stage the development team faces several crucial tasks:
determining the timing of project development, choosing methods and means
of development, establishing methods of implementation and more. If the latter
have clear rules and instructions on how to implement a method, a set of prac-
tices and means of implementation, the issue of scheduling software development
deadlines is a difficult task and requires a clear analytical calculation. The over-
all success of the project also depends on the quality and balanced assessment
of the amount of work to be performed within the set timeframe.



2 Yu. Kordunova et al.

Nowadays, a number of mathematical and software tools for project plan-
ning exist and are successfully used, including software development. However,
existing methods are not adapted to a dynamic environment, where in addi-
tion to system requirements, the time resources of individual sprints or even the
composition of teams may change during development. In such conditions, the
application of classical approaches to planning IT projects is experiencing some
difficulties.

As a result, there is a need to adapt existing or develop new planning meth-
ods for software development that can produce effective results in a dynamic
environment. This work is devoted to this issue, namely the adaptation of net-
work planning methods, as well as the development of algorithms for bypassing
the graph of the network model.

2 Problem Statement

In general, the process of sprint planning (the next stage of the software life
cycle) includes such stages as creating a product backlog, starting a sprint and
determining the minimum viable product (MVP), creating a sprint backlog,
prioritizing user stories (backlog tasks) and their evaluation. These processes are
adapted and tested in traditional project teams working with flexible software
development models [18]. These are teams of developers, numbering 5-9 people
with the division of responsibilities by roles (positions), who spend most of the
sprint’s time on solving tasks. The dynamism of such a process depends only
on a possible change of scope tasks. Team size and execution time are fixed
(Figure 1) .

Fig. 1. Limitations on a flexible software lifecycle management model

However, if the focus is made on the teams of developers of operational
formations, such as the State Emergency Service of Ukraine, which develops se-
curityoriented services (SOS), the dynamics of specialized software development
are characterized not only by the scope of work but also time resource. Some IT
departments of operational formations, in addition to general tasks in the field



Expert DSS Modeling in Lifecycle Management of Specialized Software 3

of computer science and information technology, are engaged in the implemen-
tation of applied tasks for informatization of operational and daily activities,
as well as design, development and support of computer and software systems
security-oriented direction [15].

The members of such development teams in operational formations are the
personnel of the relevant services, who, within the scope of their functional re-
sponsibilities, combine the activities related to the development of these services
with other types of operational or service activities. According to the main par-
ticipants’ specifics of such teams, the dynamics of the project environment take
on a slightly different meaning. Dynamics are now characterized not only by the
volume of work but also by the time of their implementation. At first glance, we
can assume that in such conditions, the process of developing specialized software
should be organized according to the cascade model. However, this assumption is
wrong, because the development of SOS is characterized by the dynamics of the
specification and the need to constantly update the list of works during develop-
ment. Under these conditions, the development of security-oriented services by
project teams of operational (military) formations will acquire the model shown
in Figure 2.

Fig. 2. Flexible and cascading software development models comparison with the ac-
tual SOS implementation model

From the presented model we can conclude that the dynamics of planning
the volume of work on a particular sprint, as well as the lack of control (limi-
tation) of time for their implementation, may be the cause of untimely or poor
quality project implementation. That is why there is a need to study the exist-
ing methods of optimal planning of time resources for the development of SOS,
which will correspond to the paradigm of flexible management and will allow re-
sponding quickly to deviations from the defined work plan. Therefore, the work
aims to study existing methods and develop effective mechanisms (algorithms)
for resource management of specialized software development projects (securi-
tyoriented services) in a dynamic environment (changing the content and scope
of work, and adjusting execution time).



4 Yu. Kordunova et al.

3 Main contribution

According to problem statement, the existing methods and management tools
don’t correlate with the conditions in which the development of specialized soft-
ware is carried out, where in addition to variable requirements, execution time
is fundamentally important.

So, according to the results of the study of existing methods of software life
cycle planning was made a decision to use mathematical methods of planning.
Based on it algorithms for constructing and bypassing the graph of the network
model were developed for the first time.

These algorithms form the basis of an expert decision support system, which
provides an opportunity to increase the efficiency of planning individual stages
of software development and make their adjustments in real-time.

4 Literature Review

A large number of Ukrainian and foreign scientists worked on the problems of
planning software development projects. In particular, in work [3] it was proved
planning takes the center stage in Agile projects and other domains revolve
around it. In work [11, 17] the importance of the planning process and expert
evaluation of tasks during planning poker has been proved, and the scientific
work [8] points out the importance of using the ”task board” during planning.
The scientific source [14] considered the necessary steps, which should be taken
to get the most out of agile software development, and [7] suggested the use of
a flowchart tool for decision-making in interdisciplinary research collaboration.
The work [4] describes user story estimation based on the complexity decompo-
sition using bayesian networks.

There are also many scientific papers [5, 19, 22] based on the use of network
graphs in the project planning process In particular, the authors in [19] chose the
method of solving the planning problem based on the application of the network
planning method, which is based on the idea of optimizing the critical path with
the involvement of additional limited funds. This approach does not correlate
with the development of specialized software. Article [5] describes the process of
developing a computer program for solving network optimization problems, but
the calculation of the shortest paths is based on Dijkstra’s algorithm, which is not
universal and does not work for network planning of the software development
process. The article [22] is based on the methods of PERT network planning, the
use of elements of graph theory and the method of Gantt charts. This approach is
relevant for the cascade management model, which is characterized by consistent
execution of tasks and a certain execution time.

Based on papers [1, 2, 12, 20, 21], which lay the basic practices of modern
product development planning and product planning practices in dynamic con-
ditions, it was decided to develop flexible algorithms for the project planning pro-
cess using network graphs in a dynamic environment. The work [20] proposes a
planning framework in which multi-fidelity models are used to reduce the discrep-
ancy between the local and global planner. This approach uses high-, medium-,



Expert DSS Modeling in Lifecycle Management of Specialized Software 5

and low-fidelity models to compose a path that captures higher-order dynamics
while remaining computationally tractable. In work [21] was demonstrated an
informational system or end-to-end workflow on time-series forecasting in Agile
prosses. Work [2] based on the concept of a minimum viable product in product
development, the new concept of a minimal viable production system (MVPS) is
designed. The approach focuses on the reduction of inefficient planning processes
due to changing product characteristics and aims to shorten the planning time
and the level of maturity for defined planning tasks in order to facilitate early
try out of production processes in a series production environment. Authors in
work [1] propose a planning assistance platform based on solving the planning
problem modeled as a constraint satisfaction problem (CSP). This helps project
managers to analyze the project feasibility and to generate useful schedules and
charts. In work [12] was argued and developed information graphics technologies
of designing models of the processes of multiparameter technical systems in or-
der to increase the effectiveness of determining the influence of many operating
parameters on their dynamics, which help us to construct the network planning
graph.

Authors in work [13] worked on developing security-oriented services by the
hybrid management models. However, the paper describes only the results of
the development and doesn’t consider the key stages of software life cycle man-
agement. The algorithm development issue, in particular the security-oriented
systems management, was also addressed by scientists in the work [16]. However,
the algorithms developed in this work are difficult to adapt to the life cycle of
specialized software management.

5 Materials and Methods

One option for achieving the goal is to use the mathematical apparatus of graph
theory and adapt network planning processes by optimizing the calculations of its
basic time parameters under the dynamic conditions of the specialized software
development.

The adapted method of calculating the parameters of the network model will
allow for operational re-planning of the project stages of implementation in a
dynamic environment, as well as to determine the critical scope of mandatory
work. Network planning will allow tracking in a dynamic environment of the
possible risks of overtime, as well as prioritize the phasing of their implementa-
tion. Before proceeding to build a network graph, it is important to consider the
process of planning design work for software development. Pay special attention
to sprint planning. It should be emphasized, that the planning process consists
of defining product requirements in the form of user stories [6]. In Agile method-
ology, it is not acceptable to break down requirements on technical tasks as such
an approach does not allow developers to look integrally at the performance of
certain program functions.

A user story is a short and simple description of product characteristics from
the point of view of a user seeking new opportunities [9]. It includes the full range



6 Yu. Kordunova et al.

of development: from design to testing. Such an approach will allow the whole
team to participate in the process of evaluating and developing this functionality.
Once determined, the user story is broken down into small sub-tasks (functions)
that will be performed directly by different team members. From this, it is clear
that there is a high probability that several works can be performed in parallel
(which will save a lot of time), and there may be work that depends on the
previous ones. That is why determining the critical path that will take the most
time to complete is extremely important.

Since works and events are the main elements of a network model in network
planning, in the context of Agile scheduling, work is a user story or function
that has been shredded. As a unit of measurement use story points are used,
which means the relative value, in particular a combination of the development
complexity, and the risk associated with it. Each user story or function must
have a start and end, which means events on the network graph.

To obtain a network planning graph it is necessary:

1. Prioritize user stories and functions that need to be performed.

2. Evaluate user stories and functions in the story points

3. Identify previous user stories or functions to be performed for specific user
story

At the beginning of building the network graph, number the initial event
j = 1, and the previous event (i = 0) is absent. From it, draw a vector that
will indicate the first user story or function and its weight in the Story Points.
If several tasks can be performed in parallel, the required number of vectors
is built. Since each user story must end with a final event, mark the event on
the graph and increase its sequence number by 1 (do this for all parallel works,
increasing j by 1).

If it is needed to build a user story, which is possible only after the previous
one end, look for the final event of the work that interests you on the graph, and
from it, draw the vector of the desired user story. If the execution of the user
story depends on the completion of several previous ones, solve this problem
using fictitious work. From each previous user story draw a vector, which means
a fictitious work whose weight is 0 s.p., and end them in one final event, which
will be the beginning of the new user story you need. Thus, build a network
planning graph for the number of user stories and functions that interest you
(within the scope of the sprint).

The algorithm for constructing a network graph (network model) of a certain
amount of work on the sprint is shown in Algorithm 1.



Expert DSS Modeling in Lifecycle Management of Specialized Software 7

Algorithm 1: The algorithm for constructing a network graph (net-
work model) of a certain amount of work on the sprint

Initialization:
prevTask[k][p] - array of previous works;
pair < i, j >, where i = 1, j = 2;
n- works, n = 1;
empty map MapTask < n, pair < i, j >>
for (k = 0; k < prevTask.length; k ++) do

for (p = 0; p < prevTask[k].length; p++) do
if (pverTask[k][p] == 0) then

Add n and pair < i, j > to MapTask < n, pair < i, j >>;
j ++;
n++;

end

end

end
i++;
for (k = 0; k < prevTask.length; k ++) do

for (p = 0; p < prevTask[k].length; p++) do
if (prevTask.length == 1) then

for (Map.Entry < n, pair < i, j >> works =
MapTasks.entrySet()) do

if (prevTask[k][p] == works.getKey()) then
for (Map.Entry < i, j > pairSet : pair.entrySet())
do

i = paieSet.getV alue();
Add n and pair < i, j > to
MapTask < n, pair < i, j >>;

j ++;
n++;

end

else
continue;

end

end

else
j ++;
for (Map.Entry < n, pair < i, j >> works =
MapTasks.entrySet()) do

if (prevTask[k][p] == works.getKey()) then
for (Map.Entry < i, j > pairSet : pair.entrySet())
do

i = pairSet.getV alue();
Add fict. work 0 and pair < i, j > to
MapTask < n, pair < i, j >>;

j ++;

end

else
continue;

end

end
i = j;
j ++;
Add n and pair < i, j > to MapTask < n, pair < i, j >>;
n++;

end

end

end
Return MapTask < n, pair < i, j >>.



8 Yu. Kordunova et al.

It should be recalled that the main elements of the network model are its
events and works, which are evaluated in the story points. This type of estimation
allows you to take into account the time and resource constraints of specific
software development processes.

The main parameters of the network model for assessment of specialized
software development processes at the planning stage include the early time of
the event execution Te the late time of the event execution Tl, event execution
reserves Re, and work performance reserves Rw. The algorithm for determining
these parameters, which will be embedded in the work of the expert decision
support system, will be discussed below.

In the first stage, the determination of the early time execution of events is
implemented. This parameter characterizes the period before which the event
can’t occur and allows you to control the start of work that is not regulated by
the order according to the network model. For the first event Te(1) = 0, for all
subsequent events of the network model Te is determined from the expression:

Te(j) = Te(i) + t(i→j), (1)

where Te(i) – the early time for the previous event; t(i→j) - the amount of work
(unified resource) that precedes the event j (takes into account time and human
constraints in Story Point).

t is necessary to provide the possibility of correct calculation of the early
time execution for those events that are preceded by several works, taking into
account the requirement Te(i) → max:

Te(j) = max


Te(k) + t(k→j)

...

Te(m) + t(m→j),

(2)

where k, m are the indices of events preceding the event j.

Algorithmically, the procedure for determining the early term of work with
all constraints can be represented as an algorithm for traversing the graph of the
network model with an iterative definition of the parameter Te(j) (Algorithm 2),
which was developed by the authors for the first time and adapted for flexible
project management.



Expert DSS Modeling in Lifecycle Management of Specialized Software 9

Algorithm 2: The algorithm for traversing the graph of the network
model to determine the indicator Te(j)

Initialization:
i - index of the previous event, i = 0;
j - index of the next event, j = 1;
n - the volume of network model events;
{ti→j}- set of network model works;
∀j = 1 then Te(1) = 0 ;
i++;
for (j = i+ 1; j ≤ n; j ++) do

if (i→ j ∈ {ti→j}) then
Te(j) = Te(i) + {ti→j};
if (Te(j) ∈ {Tej}) then

max({Tej}; {Te(j)});
if ({Tej} < Te(j)) then

Tprev(j) ← Ti;
HashMap < Tj , Tprev(j) >←< Tj , Tprev(j) >;
HashSet{Tej} ← Te(j) >;

else
continue for;

end

else
Tprev(j) = Ti;
HashMap < Tj , Tprev(j) >←< Tj , Tprev(j) >;
HashSet{Tej} ← Te(j);
continue for;

end

else
continue for;

end

end
i++;
if (i ̸= n) then

start for;
end
Return:
{Tej} - the set of early term execution of n event of the network model;
HashMap < Tj , Tprev(j) > - the set of previous events for the next
events in the format < Key, V alue >.

The term of early execution of events for the last event of the network model
n is the term of execution of the whole complex of sprint’s works.

Next, to control the terms by which the events of the network model must
be fully completed, to avoid cases of increasing time for the implementation of
the entire project, it is necessary to determine the late time of event execution



10 Yu. Kordunova et al.

Tl(i):

Tl(i) = Tl(j) + t(i→j), (3)

where Tl(j) - the late time of event execution; t(i→j) - the amount of work per-
formed after the event i and before event j (taking into account time and human
constraints in Story Point).

The late time of event execution Tl for the last event of the network model
is equal to the early time ot the event execution Te:

Tl(nlast) = Te(nlast) (4)

Similar to the previous cases, when the next event i initialize the execution of
n ≥ 2 number of works, the late time of the event i is taken as follows:

Tl(i) = min


Tl(k) + t(i→k)

...

Tl(m) + t(i→m),

(5)

where k, m - indices of derived events, from the event i.

Tl for the first event of the network model, provided the correct execution of
preliminary calculations, will be equal to the early time execution of this event
Te:

Tl(nfirst) = Te(nfirst) (6)

For all network model events, except the first and last, the following inequalities
must be satisfied:

Tl(n) ≥ Te(n) (7)

Algorithmically, the procedure for determining the late deadline for work,
taking into account all the limitations, can be represented as an algorithm for
traversing the graph of the network model with the iterative determination of the
parameter Tl(i) (Algorithm 3). The input data for the operation of the algorithm
is the result of traversing the graph according to the previous algorithm.



Expert DSS Modeling in Lifecycle Management of Specialized Software 11

Algorithm 3: The algorithm for traversing the graph of the network
model to determine the indicator Tli

Initialization:
i - index of the previous event, i = 0;
j - index of the next event, j = n;
n - the volume of network model events;
{ti→j}- set of network model works;
{Tej}- set of early time execution events;
∀j = n then Tl(n) = Te(n) ;
for (i = j − 1; i ≥ 1; i−−) do

if (i→ j ∈ {ti→j}) then
Tl(i) = Tl(j) − {ti→j};
if (Tl(i) ∈ {Tli}) then

min({Tli}; {Tl(i)});
if ({Tli} < Tl(i)) then

HashSet{Tli} ← Tl(i);
else

continue for;
end

else
HashSet{Tli} ← Tl(i);
continue for;

end

else
continue for;

end

end
j −−;
if (j ̸= 1) then

start for;
end
Return:
{Tli} - the set of late term execution of n event of the network model;

The results of the calculations allow us to estimate the maximum amount of
work given the available resources needed to complete the sprint. The maximum
amount of work in the network model reflects the critical path. The definition of
the critical path is organized by the network of works t(i→j) from the next late
event to the event preceding it (the previous event of the vertex of the network
graph specified in the corresponding sector). The construction of the critical
path begins with the final event Tn and ends with the first event T1:

Tn → [t(j→n)]→ Tj → [t(k→j)]→ Tk → ...→ Tm → [t(i→m)]→ Ti → [t(l→i)]→ T1,
(8)

where Tn - the last event of the network model (the first for the critical path);
Tj - late intermediate event of the network model; Ti - early intermediate event



12 Yu. Kordunova et al.

of the network model; Tk, Tm - intermediate events of the network model; T1 -
the first event of the network model (the last for the critical path).

Algorithmically, the procedure for determining the critical path based on the
results of traversing the graph of the network model is shown in Algorithm 4.
The input data for this procedure are the results of previous models.

Algorithm 4: The algorithm for traversing the graph of the network
model to determine the critical path

Initialization:
j - index of the event, j = n;
k - temporary variable;
HashMap < Tj , Tprev > - the set of previous events for the next events
Tj in the format < Key, V alue >.
Stack.add(Tj);
while (j ≥ 1) do

Stack.add(k);
j −−;

end
Return:
Stack.

The peculiarity of the critical path of the execution of work is that it does
not contain any resource reserve to achieve events (early and late terms of ex-
ecution for all events at the critical level). This indicates that any delay in the
implementation of network model events that lie within the critical path will
encourage incomplete execution of a certain amount of work on the sprint or
exceed the allowable time of their implementation.

However, other works which are included in the network model and do not
belong to the critical path may have some reserves to achieve events and perform
work. The value of these reserves will allow controlling the limits of the critical
time of start and end of work that is not within the critical path. The calculation
of these resource reserves is performed using the next expressions:

Re(j) = Tl(j) − Te(j) (9)

Rpw(t(i→j)) = Tl(j) − Te(i) − t(i→j) (10)

Rfw(t(i→j)) = Te(j) − Te(i) − t(i→j) (11)

Rdw(t(i→j)) = Te(j) − Tl(i) − t(i→j), (12)

where Re(j) - the event time reserve; Rdw(t(i→j)) - the independent work reserve;
Rpw(t(i→j)) - the full work reserve; Rfw(t(i→j)) - the free work reserve; Tl(i) -
late time of the previous event; Tl(j) - the late time of the next event; Te(i) - the
early time of the previous event; Te(j) - the early time of the next event; t - the
scope of work; j - the next event of the network model; i - the previous event of
the network model.

The algorithm 5 for traversing the graph of the network model to determine
these reserves:



Expert DSS Modeling in Lifecycle Management of Specialized Software 13

Algorithm 5: The algorithm for traversing the network model graph
to determine time reserves
Initialization:
i - index of the previous event, i = 0;
j - index of the next event, j = n;
n - the volume of network model events;
{ti→j}- set of network model works;
{Tej}- set of the early terms executed events;
{Tlj}- set of the late terms executed events;
Stack - the critical path of network model;
while (j ≥ 1) do

Re(j) = Tl(j) − Te(j);
if (R(j) == 0) then

j −−;
continue while;

else
HashSet{Rj} → R(j);
j −−;
continue while;

end

end
i→ n;
for (i = j − 1; i ≥ 1; i−−) do

if (i→ j ∈ {ti→j}) then
if (Ti /∈ Stack) then

Rpw(t(i→j)) = Tl(j) − Te(i) − t(i→j);
Rfw(t(i→j)) = Te(j) − Te(i) − t(i→j);
Rdw(t(i→j)) = Te(j) − Tl(i) − t(i→j);
HashSet{Rpw(t(i→j))} → Rpw(t(i→j));
HashSet{Rfw(t(i→j))} → Rfw(t(i→j));
HashSet{Rdw(t(i→j))} → Rdw(t(i→j));
continue for;

else
continue for;

end

else
continue for;

end

end
j −−;
if (j ̸= 1) then

start for;
else

Return:
{Re(j)}, {Rpw(t(i→j))}, {Rfw(t(i→j))}, {Rdw(t(i→j))}.

end



14 Yu. Kordunova et al.

It should be emphasized that event time reserve Re(j) characterizes the max-
imum allowable period for which it is possible to delay the execution of event n
without increasing the critical path and resource constraint on the sprint. The
full reserve of work Rpw(t(i→j)) describes how long it is possible to postpone
the start of work t(i→j) or increase its duration within available resources and
without increasing the total sprint time (critical path length). The free reserve
of work Rfw(t(i→j)) is the time for which it is possible to postpone the start
of execution of work t(i→j) or extend its duration without violating the early
term of execution events in the network model. The independent work reserve
Rdw(t(i→j)) characterizes the delay time of the start of work t(i→j) without in-
creasing the total term of the sprint’s tasks complex and without delaying any
of the other works of the network model.

6 Experiment, Results and Discussion

The algorithms for automated construction and determination of network model
parameters, when planning project works, were tested during the development
of a security-oriented system commissioned by the State Emergency Service of
Ukraine ”Development consulting assistance software system to the population
in case of threat or occurrence of emergencies with an integrated notification
function based on mobile platforms”. Input data and tasks for development
were provided by the State Emergency Service of Ukraine during martial law,
which confirms the work in dynamic conditions and limited time resources. After
receiving the task, the project backlog was formed and determined MVP by the
Product Owner. In order to determine the date of the first release, the team
estimated user stories and shredded features in Story Points and determined the
relationships between user stories, and the priority of execution. As a result,
table 1.was formed .

Table 1. A set of input data for building a network graph

Number of task 1 2 3 4 5 6 7 8 9 10 11

Story point 27 35 15 12 25 30 17 13 15 27 35

Number of previous task 0 0 1 1 2 3,4 5 5 5 7,8,9 6,10

By implementing the algorithm of constructing a network graph (network
model) of a certain amount of work on the sprint, the procedure of constructing
a network graph in the IntelliJ IDEA development environment by the Java
programming language was implemented. Figure 3 shows the result of building
a network model of project works identified in the sprint.

To properly characterize all software development processes at the planning
stage, it is necessary to determine all the parameters of the sprint’s network
model. Initially, graph traversal algorithms were implemented to determine the



Expert DSS Modeling in Lifecycle Management of Specialized Software 15

Fig. 3. The network model of the software development process, presented in the graph
form

early and late execution times of sprint (project) events. On the basis of al-
gorithms 2 and 3 the iterative process of specified parameters calculation is
programmatically realized.

Based on the results of calculating the early and late time execution events,
the critical path is programmatically determined (according to Algorithm 4).
In Figure 4 the result of critical path automated determination of the studied
network model is presented. The obtained result indicates events that are critical
and the implementation of which does not involve time reserves.

Fig. 4. The result of the critical path, the early and late execution times of events
calculation of the software development

The last step is to determine the event reserves using time reserve algorithm
(Algorithm 5). Table 2 shows the result of the specified algorithm of the software
implementation and its application to determine time reserves for the studied
network model.

Table 2. The result of a program that calculates time reserves

Event 2 4 5 7 8 10 11

Re 32 32 35 32 32 4 2



16 Yu. Kordunova et al.

Based on the results, we can conclude that the development period of the
MVP of this software is 139 Story Points. The critical path is the path that passes
through events 1, 3, 6, 9, 12, 13, 14, and 15. Events 2, 4, 5, 7, 8, 10, and 11 have
time reserves. If you need to make changes to the list of works or adjust the
time to perform a certain amount of work, the developed system for estimating
the parameters of the network model based on the developed algorithms will
instantly re-evaluate the main characteristics and anticipate possible deviations
from the plan. This subsystem forms the basis of the decision support system for
the operational management of the developing specialized software process in a
dynamic environment. After all, it will allow you to monitor the critical path of
work, available time reserves, and the amount of unfinished work in real-time.

7 Conclusions

In dynamic conditions, the planning stage of specific software development pro-
cesses is extremely important. As the experience of such development has shown,
the existing methods and management tools do not correlate with the conditions
in which the development of specialized software is carried out, where in addition
to variable requirements, execution time is fundamentally important. According
to the results of the study of existing methods of software life cycle planning in
scientific work, the following results were obtained:

1. Based on the results of optimization of mathematical methods of network
planning for life cycle management processes of specific software, algorithms for
constructing and bypassing the graph of the network model are developed to
determine its main parameters, which provide an opportunity to increase the
efficiency of planning individual stages of software development and make their
adjustments in real time.

2. Based on the scientific results and implemented algorithms, an expert
computer system was obtained, which allows determining the basic parameters
of the network model and is used to support operative decision-making in the
process of short-term life cycle planning of specialized software development
projects.

References

1. Belkasmi, M.G., Bougroun, Z., Farissi, I.E., Emharraf, M., Belouali, S., Chadli, S.,
Saber, M.: Global IT project management: An agile planning assistance. In: Ad-
vances in Smart Technologies Applications and Case Studies, pp. 575–582. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-53187-4 ˙63

2. Bertling, M., Caroli, H., Dannapfel, M., Burggraf, P.: The minimal viable produc-
tion system (mvps) – an approach for agile (automotive) factory planning in a
disruptive environment. In: Advances in Production Research. pp. 24–33. Springer
International Publishing (2019). https://doi.org/10.1007/978-3-030-03451-1 ˙3

3. Boral, S.: Domain V: Adaptive Planning (12 2016). https://doi.org/10.1007/978-
1-4842-2526-4 ˙6



Expert DSS Modeling in Lifecycle Management of Specialized Software 17

4. Durán, M., Juárez-Ramı́rez, R., Jiménez, S., Tona, C.: User story estimation based
on the complexity decomposition using bayesian networks. Programming and Com-
puter Software 46, 569–583 (2020). https://doi.org/10.1134/S0361768820080095

5. Dymova, H., Larchenko, O.: Development of a computer program for solving net-
work optimization problems. Computer-integrated technologies: education, science,
production 41, 143–151 (2020). https://doi.org/10.36910/6775-2524-0560-2020-41-
23

6. Hallmann, D.: ”i don’t understand!”: Toward a model to evaluate the role of user
story quality. In: Stray, V., Hoda, R., Paasivaara, M., Kruchten, P. (eds.) Agile Pro-
cesses in Software Engineering and Extreme Programming. pp. 103–112. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-49392-9 ˙7

7. Jansen, U., Schulz, W.: Flowchart tool for decision making in interdisciplinary
research cooperation. In: International Conference on Digital Human Modeling
and Applications in Health, Safety, Ergonomics and Risk Management. pp. 259–
269. Springer (2017). https://doi.org/10.1007/978-3-319-58466-924

8. Karras, O., Klünder, J., Schneider, K.: Is task board customization beneficial? In:
International Conference on Product-Focused Software Process Improvement. pp.
3–18. Springer (2017). https://doi.org/10.1007/978-3-319-69926-4 ˙1

9. Khmel, M., Prydatko, O., Popovych, V., Tkachenko, T., Kovalchuk, V.: Students
r&d projects as a tool for achieving program competencies. Information and com-
munication technologies in modern education: experience, problems, prospects . . .
(2021)

10. Kordunova, Y., Smotr, O., Kokotko, I., Malets, R.: Analysis of the traditional and
flexible approaches to creating software in dynamic conditions. Management of De-
velopement of Complex Systems pp. 71–77 (2021). https://doi.org/10.32347/2412-
9933.2021.47.71-77

11. Lenarduzzi, V., Lunesu, M.I., Matta, M., Taibi, D.: Functional size measures and
effort estimation in agile development: A replicated study. vol. 212 (05 2015).
https://doi.org/10.1007/978-3-319-18612-2 ˙9

12. Liaskovska, S., Martyn, Y., Malets, I., Prydatko, O.: Information technology
of process modeling in the multiparameter systems. pp. 177–182 (08 2018).
https://doi.org/10.1109/DSMP.2018.8478498

13. Martyn, Y., Smotr, O., Burak, N., Prydatko, O., Malets, I.: Software for shel-
ter’s fire safety and comfort levels evaluation. In: Communications in Computer
and Information Science, pp. 457–469. Springer International Publishing (2020).
https://doi.org/10.1007/978-3-030-61656-4 ˙31

14. Meier, A., Ivarsson, J.C.: Agile software development and service science. GSTF
Journal on Computing (JoC) 3(3), 1–5 (2013). https://doi.org/10.7603/s40601-
013-0029-6

15. Prydatko, O., Kordunova, Y., Kokotko, I., Golovatiy, R.: Substantiation of the
managing student r&d projects methodology (on the example of the educational
program computer science). Information and communication technologies in mod-
ern education: experience, problems, prospects . . . (2021)

16. Prydatko, O., Popovych, V., Malets, I., Solotvinskyi, I.: Algorithm of res-
cue units logistic support planning in the process of regional life safety
systems development. MATEC Web of Conferences 294, 04002 (01 2019).
https://doi.org/10.1051/matecconf/201929404002

17. Sachdeva, V.: Requirements prioritization in agile: Use of planning poker
for maximizing return on investment. In: Advances in Intelligent Systems
and Computing, pp. 403–409. Springer International Publishing (Jul 2017).
https://doi.org/10.1007/978-3-319-54978-1 ˙53



18 Yu. Kordunova et al.

18. Schwaber, K., Sutherland, J.: The scrum guide. Scrum Alliance (2020)
19. Seidykh, O., Chobanu, V.: Optomozation of the network graphics of the com-

plex of works. Modern engineering and innovative technologi 1(3), 61–67 (2018).
https://doi.org/10.30890/2567-5273.2018-03-01-009

20. Tordesillas, J., Lopez, B.T., Carter, J., Ware, J., How, J.P.: Real-time planning
with multi-fidelity models for agile flights in unknown environments pp. 725–731
(2019). https://doi.org/10.1109/ICRA.2019.8794248

21. Uzun, I., Lobachev, I., Gall, L., Kharchenko, V.: Agile Architectural Model for
Development of Time-Series Forecasting as a Service Applications, pp. 128–147.
Springer International Publishing (07 2021). https://doi.org/10.1007/978-3-030-
82014-5 ˙9

22. Velykodniy, S., Burlachenko, Z., Zaitseva-Velykodna, S.: Architecture development
of software for managing network planning of software project reengineering. In-
novative technologies and scientific solutions for industries. 2(8), 25–35 (2019).
https://doi.org/10.30837/2522-9818.2019.8.025


