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Abstract. In this scientific work, mathematical modeling of tetrahedron elements in the finite 
element method is presented, which includes the determination of geometric shape, shape functions, 
and material properties. Unknown fields such as displacement vectors, strain, and stress tensors are 
considered. The methodology of applying the principle of virtual work and equilibrium equations is 
described, allowing the derivation of a system of differential equations to describe the behavior of 
the tetrahedral element. Integration over the volume and consideration of boundary conditions help 
reduce the equations to a system of linear algebraic equations for numerical solution using the finite 
element method. It was found that modeling tetrahedral elements with a specific given radius (for 
example, R=0.3 mm) involves stages such as geometry determination, element generation, shape 
function formation, stiffness matrix computation, and solving a system of linear equations. The 
radius R of tetrahedral elements is taken into account at all stages, ensuring accuracy and reliability 
in tetrahedra modeling. The research also focuses on the fact that the occurrence of minor errors in 
iterative processes may result from several factors, including iteration step, the number of iterations, 
stopping criteria, linear or nonlinear material behavior, solution method selection, the presence of 
geometric inhomogeneities, and element size. 

1 Introduction 
Mathematical modeling is the process of constructing mathematical representations of real systems 
or phenomena with the aim of studying their properties and behavior [1, 2]. The use of 
mathematical modeling based on finite element methods has numerous characteristics, including 
[3]: 

1) Abstraction of reality (mathematical models allow abstraction from complex details of real 
systems and define fundamental aspects relevant to specific research or tasks, facilitating the 
analysis and understanding of complex systems) [4]; 

2) Prediction and optimization (mathematical models enable predicting the behavior of a 
system under different conditions and optimizing parameters to achieve specific goals) [5, 6]; 

3) Time and resource savings (mathematical modeling allows efficient examination of the 
impact of various factors without the need for expensive experiments in real life, significantly 
saving time and resources) [7, 8]; 

4) Explanation and interpretation (mathematical models can serve as tools for explaining 
cause-and-effect relationships and interpreting interactions between different variables in a system) 
[9, 10]; 
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5) Warning about possible risks (mathematical modeling can help identify potential risks and 
forecast possible consequences under different scenarios and situations) [11]; 

6) Numerical analysis method (mathematical modeling uses numerical methods to solve 
complex mathematical equations, allowing obtaining results where analytical methods may be 
inefficient or impossible) [12]; 

7) Development of new theories (models can be used to develop new theories and hypotheses, 
which may be important objects for further research) [13]; 

8) Discretization of space and time (mathematical modeling and the finite element method are 
used to approximate partial derivatives of differential equations with finite differences. Space and 
time are divided into a grid, and derivatives are approximated on this grid) [14]. 

It is worth noting that the finite element method (FEM) is a numerical method for solving 
differential equations based on the approximation of the differentiation process by finite differences 
[15]. This type of method should be used for modeling and analyzing physical processes such as 
heat transfer, diffusion, convection, electrodynamics, and others. The main idea of the finite 
element method is to replace the differential operators with finite differences on the grid of the 
computational domain. The spatial variable domain is divided into a grid, and numerical 
approximations of partial derivatives are applied at each point on the grid. This leads to a system of 
algebraic equations that can be solved by numerical methods. In turn, FEM allows the use of 
various approximation schemes, such as explicit and implicit schemes, which affect the stability and 
accuracy of numerical calculations. It is worth noting that this approach is effective for solving 
various types of differential equations, particularly for time-solving partial differential equations. 
The finite element method is widely used in numerical modeling for analyzing various physical 
phenomena and processes in science, engineering, forecasting, and optimization. 

Additionally, the application of mathematical modeling based on the finite element method is 
essential for investigating tetrahedral elements. This improvement enhances the quality and 
accuracy of both traditional modeling approaches and enables a detailed study of the tetrahedral 
element. Overall, mathematical modeling based on the finite element method allows the analysis 
and resolution of real-world problems, exploration of key parameters in real-time, and formulation 
of new ideas and hypotheses for further research. 

2 Main Part 
The main directives and aspects of mathematical modeling are discussed in works [16, 17, 18]. In 
this conducted experiment, concepts of mathematical modeling and the finite element method 
(FEM) are partially described, along with numerous features of using FEM for mathematical and 
computer modeling [19, 20, 21]. Abstraction of reality in mathematical modeling is presented in 
works [22, 23, 24]. It has been identified that the use of mathematical modeling allows abstraction 
from complex details of real systems, focusing on fundamental aspects for researching or solving 
complex problems. The utilization of mathematical models for understanding and predicting system 
behavior under different conditions and for optimizing parameters to achieve specific goals is 
presented in works [25, 26, 27]. Interpretation and its key indicators are explored in works [28, 29, 
30]. It has been found that mathematical models can serve as tools for explaining cause-and-effect 
relationships and interpreting interactions between different variables in a system. The numerical 
analysis method is described in scientific experiments [31, 32, 33]. It is clarified that FEM is used to 
solve complex mathematical equations, allowing obtaining results where analytical methods may be 
inefficient or impossible [34, 35, 36]. The discretization and modeling of tetrahedral space are 
justified in works [37, 38, 39]. Authors mainly use mathematical modeling to approximate partial 
derivatives of differential equations with finite differences. Therefore, the analysis of literature 
sources shows a comprehensive overview of the use of mathematical modeling and FEM as a 
whole, indicating their wide applicability in numerous fields, including science, engineering, and 
forecasting. However, there is limited research conducted on tetrahedral elements, and their 
modeling [40, 41, 42] has been almost non-existent, ultimately addressing the issue of the economy 
and efficiency of the main labor-intensive stages in conducting physical experiments. Additionally, 
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the application of such a mathematical combination will allow predicting parameters of particles 
with a highly complex shape – tetrahedra. 

The goal of the work is to develop and present a model for the investigation of tetrahedral 
elements, considering the analysis of geometric shape, shape functions, and material properties of 
these elements, as well as including unknown fields such as displacement vectors, strain tensors, 
and stresses. The study aims to investigate the influence of various factors, such as geometry, 
boundary conditions, iterative processes, displacement of points in space, and loading on the 
accuracy and efficiency of the obtained numerical solution. 

Materials. Particles, tetrahedral elements, are one type of non-homogeneous elements with the 
shape of a tetrahedron. A tetrahedron is a geometric figure with four vertices, four sides, and four 
angles. It should be noted that using the finite element method (FEM), tetrahedral elements can be 
employed to approximate the geometric shapes and physical properties of complex objects in 
numerical calculations. In turn, a tetrahedron is a polyhedron composed of four triangular faces, all 
sharing a common vertex. 

Among the main characteristic features of tetrahedral elements, the following can be highlighted: 
1. Geometric shape: tetrahedral elements are commonly used to approximate objects with a 

shape close to a tetrahedron in three-dimensional space. 
2. Number of vertices: in any case, each tetrahedron has four vertices (nodes) that define its 

geometric configuration. 
3. Spatial properties: non-homogeneous tetrahedral elements are used to model three-

dimensional objects such as structures, volumes of fluids, or solid bodies, where space is considered 
in three dimensions. 

4. Approximation: due to their simplicity and flexibility, tetrahedral elements can effectively 
approximate geometric shapes of varying complexity. 

It is worth noting that in numerical calculations, where the geometric and physical properties of 
an object need to be approximated for obtaining numerical results, the use of tetrahedral elements in 
FEM can be an effective approach for modeling three-dimensional objects. Figure 1 shows the 
structural scheme of tetrahedral elements with non-homogeneous structure. 

 

 
Fig. 1. Structural scheme of tetrahedral elements 

 
The mathematical model of tetrahedral elements can be represented using the finite element 

method (FEM). FEM is a numerical method for analyzing the behavior of materials and structures 
by dividing them into elementary components, such as tetrahedra, and applying certain 
mathematical equations that qualitatively describe their behavior. 

Let u be the displacement (deformation) vector at the nodal points of the tetrahedral element, and 
x be the vector of coordinates relative to the origin. Then, Hooke’s law for the tetrahedral element 
can be expressed as follows: 
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Dσ ε= ⋅ ,                                                                              (1) 
where: σ – stress tensor; D – material stiffness tensor; ε – strain tensor. 

Then, the stiffness matrix D is typically a fourth-order matrix, as it has four indices. It should be 
noted that different forms of the matrix can be used depending on the material. Following this, the 
strain tensor ε can be expressed in terms of the gradient vector of displacement u∇ , where the 
gradient of displacement indicates the deformation change in space. This gives us: 

 
1 ( ( ) )
2

Tu uε = ⋅ ∇ + ∇                                                                   (2) 

 
It is also worth noting that with respect to the rotational gradient of deformation ε∇ , the 

gradient of displacement u∇  can be determined. The main task in such research is to find the 
solution to the system of equations that models deformation and stress in a tetrahedral element. This 
can be achieved using numerical solution methods such as the finite element method. Additionally, 
it can be based on modeling tetrahedral elements. Typically, iterative methods are needed to find 
the numerical solution, initially for the system of equations and later for modeling. This 
mathematical model is important for analyzing the behavior of materials and their structures, 
primarily under deformations, and it is widely used for predicting and optimizing the behavior of 
materials under various real-time conditions. 

Tests. To qualitatively conduct the modeling of tetrahedral elements, it is necessary to consider 
each circular element of the tetrahedron’s triangular cross-section at the initial stage (Figure 2). It 
should be noted that the displacement of each node primarily consists of three components, which 
are equal to: ( ; ; )T

i i i iq u v w= , where і = 1; 2; 3 forming the displacement vector. We obtain: 
 

1 2 3( )T T T Tq q q q= ⋅ ⋅                                                                   (3) 
 
In turn, the displacement vector in a tetrahedral element is a vector that describes the changes in 

the position of material points in space due to deformation. It determines how each point of the 
tetrahedron is displaced or deformed as a result of applied loads or influences. 

Let u be the displacement vector. For a tetrahedral element, we can have three displacement 
components for each direction (x, y, z) in three-dimensional space. Thus, the displacement vector 
for a tetrahedral element can be expressed as: 

 
x

y

z

u
u u

u

 
 =  
  

,                                                                             (4) 

 
where: , ,x y zu u u  – displacement components along the axis x, y end z. 

It is important to consider that displacement is determined by the changes in the positions of 
material points relative to their initial state, rather than their absolute positions. This allows for the 
analysis and modeling of deformations and stresses in heterogeneous materials and structures under 
the influence of additional loads. Figure 2 illustrates the cross-section of a ring-shaped tetrahedral 
element. 

 

30 International Scientific Applied Conference Problems of Emergency
Situations (PES 2024)



 

 
Fig. 2. Cross-section of a ring-shaped tetrahedral element with coordinates of points (x, y, z) 

 
From the above-described material, it follows that the mathematical modeling of a tetrahedral 

element in the context of the finite element method includes determining the element’s shape, 
unknown fields, and material properties. The key aspects of mathematical modeling of a tetrahedral 
element with coordinates (x, y, z) are as follows: 

1. Element Shape: 
- geometric shape: determining the geometric shape of the tetrahedral element involves the 

coordinates of its vertices in three-dimensional space. Each vertex is defined by three coordinates 
(x, y, z); 

- shape functions: shape functions are used to describe the distribution of physical fields (such 
as deformations or displacements) within the tetrahedron. These functions express the dependence 
of fields on the local coordinates of the element. 

2. Unknown Fields: 
- displacement vector (u): a generalized field describing the displacement of points in space; 
- strain tensor (ε): defines material deformations within the tetrahedron; 
- stress tensor (σ): determines stresses in the material at each point of the tetrahedron; 
- other information: depending on the specific task, other unknown fields, such as temperature, 

concentration, etc., may be defined. 
3. Equations of Equilibrium: 
- application of the virtual work principle and equilibrium equations: applying these principles 

allows obtaining a system of differential equations that describe the behavior of the tetrahedral 
element over time under the application of force, boundary conditions, and material properties. 

4. Volume Integration: 
- numerical methods: numerical methods, such as Gaussian quadrature, are used to approximate 

volume integrals over the tetrahedron to calculate values at its nodes. 
5. Boundary Conditions: 
- incorporation of boundary conditions: considering boundary conditions involves defining the 

values of unknown fields on the domain’s boundaries and their impact on the equilibrium equations. 
6. Finite Element Method: 
- consolidation of equations: bringing all equations into a unified system and expressing them 

in the form of linear algebraic equations. Numerical solution methods, such as iterative methods or 
direct solution methods, are then applied. 

In Figure 3, modeling of tetrahedral elements is presented, enabling the analysis of material 
behavior and structure under various conditions. 
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Fig. 3. Modeling tetrahedral elements with a radius R=0.3 mm 

 
The modeling of tetrahedral elements with a specific radius, such as R=0.3 mm, involves several 

steps. While the radius may not directly appear in the mathematical expressions for the finite 
element method, it is considered in calculations related to geometry generation, stiffness matrix 
computation, and other parameters. The main indicators used in our investigation of the tetrahedron 
include: 

1. Geometry Definition: 
o initially determined the coordinates of the tetrahedron’s vertices in three-dimensional space. 

This involved locating each vertex with consideration of the radius R. For instance, if 1 1 1( , , )A x y z , a 
spherical region around this point was considered, and other points on this sphere were selected. 

2. Tetrahedral Element Generation: 
o created a geometric model of the tetrahedral element from the defined vertices. Utilized 

developed software for generating and modeling finite elements, as depicted in Figure 3. 
3. Formation of Shape Functions: 
o defined shape functions to describe the distribution of physical fields (e.g., displacements or 

deformations) inside the tetrahedron. Radius R was explicitly considered in these functions. 
4. Stiffness Matrices and Integration: 
o applied numerical methods to compute stiffness matrices, considering geometric and 

physical properties of the tetrahedron, including its radius R. 
5. Solution of the System of Equations: 
o solved the system of linear algebraic equations resulting from the application of the finite 

element method. Applied boundary conditions and obtained the distribution of unknown fields 
within the tetrahedron. 

It’s noteworthy that during the modeling of tetrahedral elements, we observed a certain 
displacement of points (particles) in space due to the nodal force of the tetrahedron. The results of 
this dependence are presented in Figure 4. 
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Fig. 4. Exponential dependence of the displacement of points (particles) in space on the nodal force 
of the tetrahedron, where: the solid curve represents linear analysis, and the dashed curve represents 
nonlinear analysis 

 
From the conducted research, it can be concluded that the exponential dependence of point 

displacement in space on the nodal force of the tetrahedron is predominantly expressed 
mathematically. The linear and nonlinear analyses showed some differences in the material’s 
response to loading. 

Linear analysis (solid curve):  
In the linear case, we used Hooke’s Law to describe the relationship between force effects and 

displacements. The obtained relationship is as follows: 
 

Gτ γ= ⋅ ,                                                                                (5) 
 

where: τ  – shear stress; G – shear modulus (shear modulus or modulus of elasticity in shear);  
γ – shear strain. 

It should be noted that the mathematical expression (5) is linear and does not account for 
nonlinear effects in the material under large loads. 

Nonlinear analysis (dashed line curve):  
In this nonlinear case, when the material predominantly exhibits nonlinear behavior, a more 

complex mathematical approach can be employed, such as the law of elastic-plastic deformation. 
The obtained expression is as follows: 

 
(1 )nGτ γ β γ= ⋅ ⋅ + ⋅ ,                                                                       (6) 

 
where: β  – nonlinear parameter; n – exponential parameter, which can vary from 0 to 1. 

It is worth noting that such a mathematical approach allowed us to account for nonlinearity in the 
material and loading. If n equals 1, the effects will be linear; however, when n, the exponential 
parameter, exceeds 1, the effects become more nonlinear, and the exponential dependence becomes 
more pronounced. 

The analysis indicates that the investigation of the tetrahedral element is an extremely complex 
process, leading to errors from the application of iterative modeling. The results of the error levels 
from iterative modeling are presented in Figure 5. 
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Fig. 5. Dependency of error levels on iterative modeling 

 
It should be noted that minor errors from repeated iteration arise due to: 
1) iteration step (usually the iterative process involves certain steps, at each of which a new 

approximate solution is computed. Depending on the method, such as the Hooke’s method, the 
number of iterations can significantly affect the accuracy of the results. Typically, increasing the 
number of iterations improves the solution's accuracy); 

2) stopping criteria (defining stopping criteria for the iterative process is crucial. When 
considering the convergence of the method, careful attention should be paid to stopping criteria, as 
an incorrect choice can lead to inaccurate results or unnecessary computations); 

3) linear or nonlinear behavior (if the material exhibits linear behavior, greater convergence 
and rapid error reduction can be expected. In the case of nonlinear effects, such as plasticity or 
material heterogeneity, the iterative process and its modeling can be more costly and less efficient, 
resulting in increased error levels); 

4) solution methods (the choice of a specific solution method, such as the Hooke’s method or 
the reduced hessian strategy (RHS), can impact error levels and convergence speed. Some methods 
may be better suited to certain types of problems); 

5) geometric irregularities (the presence of geometric irregularities, such as sharp angles or 
material clustering, can affect the iterative process and lead to slow convergence); 

6) element sizes (reducing the size of elements can improve result accuracy, but there may be 
some increase in computations, making calculations more cumbersome and resource-intensive). 

Therefore, to address specific tasks, testing and validating the applied method at various stages 
of problem-solving, while adjusting parameters and evaluating their impact on convergence and 
solution accuracy, are essential. 

3 Conclusion 
From this scientific research, the following conclusion can be drawn: mathematical modeling of a 
tetrahedral element in the context of the finite element method is a complex process that involves 
several key aspects, including the element’s shape (tetrahedron), unknown fields (displacement 
vector, strain tensor, stress tensor), equilibrium equations, volume integration, boundary conditions, 
and the application of the finite element method. 

In modeling tetrahedral elements with a specified radius R, specific steps and parameters are 
employed to ensure accuracy and correctness of the results. Among the main aspects are geometry 
definition, tetrahedral element generation, formation of shape functions, stiffness matrix integration, 
and solution of the system of equations. 

It is worth noting that the choice of parameters in the iterative process plays a crucial role in 
modeling tetrahedral elements, such as iteration step, stopping criteria, linear or nonlinear behavior, 
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solution methods, geometric irregularities, and element sizes, which determine the accuracy and 
efficiency of the results. When addressing specific tasks, we recommend conducting testing and 
validation of methods at various stages of problem-solving, considering the impact of parameter 
changes on convergence and solution accuracy. It should also be emphasized that the mentioned 
modeling process parameters help reduce the error level, resulting in the desired high-quality 
outcome. 
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