УДК 614.84, 536.521.2.389.6

Вас. В. Ковалишин, канд. техн. наук, С.П. Фуртак, канд. техн. наук, проф., А.С. Лин, Вол. В. Ковалишин

НАУКОВІ АСПЕКТИ СТВОРЕННЯ РАДІОМЕТРУ ДЛЯ ВИМІРЮВАННЯ ПОТУЖНИХ ОПРОМІНЕНОСТЕЙ

Наведено блок-схему радіометра для вимірювання порівняно потужних (до 50 кВт·м⁻²) опроміненостей. Розглянуті математичне і метрологічне забезпечення радіометра, приведені відповідні вирази і результати оцінки точності випромінювання опроміненості залежно від робочого спектрального діапазону та тілесного кута зору радіометра, температури випромінювальних об'єктів.

Останнім часом у зв'язку з подальшим розвитком і удосконаленням енергетики, металургії, наукових досліджень, енергозбереження тощо виникла необхідність вимірювання не тільки температури, але і опроміненості (енергетичної освітленості E, $Bt \cdot m^{-2}$) тих чи інших об'єктів, у тому числі і операторів (наприклад, пожежників), які працюють в екстремальних умовах за наявності потужних променевих теплових потоків, створюваних, наприклад, відкритим полум'ям, нагрітими об'єктами тощо.

Під час розроблення радіометра для вимірювання потужних опроміненостей необхідно розв'язати ряд задач, пов'язаних з їх метрологічним забезпеченням, вибором спектральної робочої області, підбором приймача випромінювання з необхідними техніко-експлуатаційними параметрами, методикою градуювання пірометра і оцінкою її точності тощо.

Оскільки робота радіометра пов'язана з вимірюванням теплового випромінювання, то, зрозуміло, основу його метрологічного забезпечення повинні складати випромінювачі типу абсолютно чорного тіла (АЧТ) і, відповідно, теоретичним обгрунтуванням мають бути закон Планка [1–5] та всі закони і наближення (закон Стефана-Больцмана, закон зміщення Віна, закон Ламберта тощо), які випливають з нього.

Слід зауважити, що тільки із застосуванням випромінювача АЧТ можна розрахувати опроміненість *E*, яка ним створюється, що є необхідним для градуювання радіометра. Відповідний вираз [6] має вигляд:

$$E = \frac{\sigma S \cos \alpha (T^4 - T_0^4)}{\pi r^2} \,. \tag{1}$$

- *r* відстань від вихідної зіниці випромінювача АЧТ до площадки *dS*, яка розташована перпендикулярно до випромінювача АЧТ;
- α кут падіння випромінювання на площадку dS;
- σ стала Стефана-Больцмана (σ = 5,67 · 10⁻⁸ Вт·м⁻²·K⁻⁴);
- *T*, *T*₀ відповідно абсолютні температури випромінювача АЧТ і навколишнього середовища;
 - *S* площа вихідної зіниці випромінювача АЧ;
 - *d* діаметр вихідної зіниці випромінювача АЧТ

Рисунок 1 – Розрахункова схема опромінення з застосуванням випромінювача АЧТ

За малих значень кутів α і температур *T*, відчутно більших від температури T_0 , формула (1) спрощується:

$$E = \frac{\sigma ST^4}{\pi r^2}.$$
 (2)

Точність формули (2) легко оцінити, взявши відношення $\left(\frac{T_0}{T}\right)^4$. Так, за температури випромінювача (наприклад, полум'я) $T = 700^{\circ}$ C і $T_0 = 300$ K похибка застосування формули (2) не перевищує 0,9%. За більших значень T похибка зменшується. Похибку від наближення $\cos \alpha = 1$ (тобто співвідношення $\frac{d}{r}$) буде оцінено нижче. Останній вираз (2) складає теоретичну основу для розрахунку градуювальної характеристики радіометра.

Зрозуміло, що вихідний сигнал датчика радіометра U(B) повинен бути прямопропорційним до величини вимірюваної опроміненості E в широкому динамічному діапазоні:

$$U = ESaF, (3)$$

де *S* – площа чутливої площини приймача радіометра;

F – вольт-ватна чутливість приймача [4–6], В/Вт;

а – поглинальна здатність чутливої площини приймача. Ввівши приведену до *S* чутливість *K* (В·м²/Вт) приймача:

$$K = SaF, \tag{4}$$

одержимо з використанням виразу (3):

U = EK.

Якщо забезпечити умову K = const у широкому спектральному і динамічному діапазонах, то, вимірявши один раз E_0 і U_0 , можна визначити K:

$$K = \frac{U_0}{E_0},$$

а при відомому K - і величину опроміненості E:

$$E = \frac{U}{K}.$$
 (5)

Аналіз літературних даних [4–8] і проведені експериментальні дослідження показали, що умову K = const у широкому динамічному (5·10⁴) і спектральному (0,3–10 мкм) діапазонах роботи радіометра забезпечує використання в останньому термоелектричного приймача випромінювання, який складається із десятиспайної хромель-копелевої термобатареї, на робочі («гарячі») спаї якої нанесено тонкий пористий шар на основі платини, для якого $a \approx 1$ (так звана платинова чорнота).

Вікно датчика радіометра виготовлено із флюориту (CaF₂, іртран-3), який є прозорим для випромінювання в спектральному діапазоні від 0,3 до 10 мкм [4].

Методику вибору оптимального робочого спектрального діапазону радіометра розглянуто нижче.

У таблиці 1 наведено дані градуювання датчика радіометра по випромінюванню АЧТ з діаметром вихідної зіниці *d* = 44 мм, яка знаходиться на відстані *r* = 0,5 м від датчика; діаметр польової діафрагми приймача – Ø5 мм (польова діафрагма виготовлена з алюмінієвої фольги); товщина флюоритового вікна датчика *Δ* = 1,5 мм.

ЗІНИЦІ 44 М	IM		
<i>Т</i> , К	$U_0, \mathrm{B} \cdot 10^{-3}$	$E_0, \operatorname{Bt-m}^{-2}$	$K, (B \cdot M^2 / B_T) \cdot 10^{-6}$
1094	0,116	157,3	0,735
1188	0,161	218,7	0,737
1282	0,219	296,6	0,738
1379	0,295	397,1	0,743
1478	0,389	524,0	0,742
1575	0,503	675,6	0,745

Таблиця 1 – Дані щодо градуювання датчика випромінювання АЧТ з діаметром вихідної зіниці 44 мм

Для розрахунку градуювальної характеристики радіометра використаємо вираз (5) з одержаним (згідно з даними таблиці 1) середнім значенням $K = 0.74 \text{ B} \cdot \text{m}^2/\text{B}\text{T}$.

У таблиці 2 наведено реперні точки градуювальної характеристики радіометра. Дані таблиці 2 використовувались для «розгонки» електронного блоку. Оскільки реальні джерела опромінення в більшості випадків є протяжними (наприклад, полум'я), то опроміненість від них може бути обчислена інтегруванням по куту падіння *α* випромінювання (рисунки 1, 2).

1 1 2 1	1 1 1
<i>U</i> , мВ	<i>Е</i> , кВт/м
0,074	0,7
0,37	0,5
0,667	0,9
0,740	1,0
3,70	5
7,40	10
14,80	20
29,60	40
37,0	50

Таблиця 2 – Реперні точки градуювальної характеристики радіометра

У першому наближенні будемо вважати, що протяжними джерелами опроміненості є площини, які випромінюють як АЧТ.

Оскільки джерела випромінювання типу АЧТ є рівнопроменистими [1–6], то опроміненість датчика створена кільцевою зоною площею dS (рисунок 2), розташованою на поверхні площини, яка знаходиться на відстані r від датчика радіометра, еквівалентна опроміненості датчика радіометра, створеної кільцевою зоною площею dS, розташованої на поверхні сфери радіуса r (рисунок 2).

Рисунок 2 - Схема опроміненості датчика

У такому разі, провівши інтегрування по куту α з використанням виразу (1) за умови $T \ll T_0$, одержимо після очевидних перетворень:

$$E = \int_{0}^{\alpha} \frac{\sigma T^{4} \cos \alpha dS}{\pi r^{2}} = \int_{0}^{\alpha} \frac{\sigma T^{4} \cos \alpha d\omega r^{2}}{\pi r^{2}} = \frac{\sigma T^{4}}{\pi} \int_{0}^{\alpha} \cos \alpha 2\pi \sin \alpha d\alpha = \sigma T^{4} \sin^{2} \alpha .$$
(6)

У даному випадку використано загальновідоме співвідношення між тілесним кутом ω (рисунок 2), в якому сприймається випромінювання, і кутом α :

$$\omega = 2\pi (1 - \cos \alpha). \tag{7}$$

Користуючись виразами (6, 7), можна обчислити відносну похибку $\frac{\Delta E}{E}$ залежно від кута α і тілесного кута ω , де ΔE – опроміненість із тілесного кута $2\pi - \omega$, а E – опроміненість із тілесного кута 2π , тобто при $\alpha = \frac{\pi}{2}$. Дані обчислень наведені в таблиці 3.

За допомогою виразу (6) можна також оцінити точність формули (2), взявши відношення опроміненості E_2 , визначеної за формулою (2), до опроміненості E_6 , визначеної за формулою (6):

$$\frac{E_2}{E_6} = \frac{d^2}{4r^2 \sin^2 \alpha} = \frac{\lg^2 \alpha}{\sin^2 \alpha} = 1 + \frac{d^2}{4r^2}.$$
(8)

Так, якщо відстань r (рисунок 1) не менше, ніж у п'ять разів перевищує діаметр d вихідної зіниці АЧТ, то похибка при використанні формули (2) не перевищує 1%. За більших відношень $\frac{r}{d}$ похибка, згідно з виразом (8), зменшується.

Принагідно зауважимо, що величина опроміненості E згідно з формулою (6) залежить тільки від кута α , тому форма поверхні протяжного джерела (наприклад, полум'я) не впливатиме на результати вимірювання опроміненості E за умови, правда, що випромінювання цього джерела є близьким до випромінювання АЧТ.

	L	
lpha, град.	<i>w</i> , стер.	$\frac{\Delta E}{E}$, %
60	π	25
70	1,32π	12,7
80	1,6571π	3,0
85	1,83π	0,8

Таблиця 3 – Відносна похибка $\frac{\Delta E}{E}$ залежно від кута α і тілесного кута ω

Оцінимо температуру Δt перегріву робочих («гарячих») спаїв приймача радіометра. Коефіцієнт ТЕРС (α) хромель-копелевої десятиспайної термобатареї [8] рівний 0,69 мВ/град. Одержані величини Δt згідно з даними таблиці 2 наведено в таблиці 4.

Приведені в таблиці 4 величини Δt показують, що навіть за максимальних значень температури перегріву температура робочих спаїв термобатареї за навколишньої температури $t = 37^{\circ}$ С не перевищує 91°С, хоча застосована як приймач радіометра термобатарея [8] допускає перегрів робочих спаїв до температури, більшої за 100°С.

Зрозуміло, що робоча спектральна ділянка $\lambda_1 - \lambda_2$ радіометра повинна забезпечити реєстрацію якнайбільшої долі випромінювання від нагрітих об'єктів, температура яких може мінятись в порівняно широкому діапазоні $t_1 - t_2$. Так, наприклад, для полум'я температура може мінятися від $t_1 = 700$ °C до $t_2 \ge 2000$ °C.

E , $\kappa BT/m^2$	<i>∆t</i> , °C
0,1	0,107
0,5	0,536
0,9	0,967

Таблиця 4 – Температура *Дt* перегріву робочих спаїв приймача радіометра

Оскільки, зрозуміло, практично неможливо реєструвати випромінювання на ділянці від $\lambda_1 = 0$ до $\lambda_2 = \infty$, то при використанні на практиці певної робочої спектральної ділянки радіометра треба конкретно оцінити відносну долю випромінювання, яке реєструється радіометром.

Для проведення такої оцінки використаємо закон Планка для спектральної густини випромінювання АЧТ – $r(\lambda, T)$:

$$r(\lambda, T) = \frac{C_1}{\lambda^5} \frac{1}{\exp\left[\frac{C_2}{\lambda T}\right] - 1}$$
(9)

і закон зміщення Віна:

$$\lambda_{\rm m} = \frac{a}{T},\tag{10}$$

де *С*₁ – перша стала закону Планка;

- C_2 друга стала закону Планка ($C_2 = 14, 4 \cdot 10^3$ мкм·К);
- a стала Віна ($a = 2,90 \cdot 10^3$ мкм·К);
- $\lambda_{\rm m}$ довжина хвилі максимуму $r(\lambda, T)$.

Спочатку знайдемо відносну спектральну густину випромінювання:

$$f(\lambda,T) = \frac{r(\lambda,T)}{r(\lambda_{\rm m},T)}.$$

Шляхом нескладних перетворень з використанням виразу (10) одержимо:

$$f(\lambda,T) = \frac{a^5 \left(\exp\left[\frac{C_2}{a}\right] - 1 \right)}{\left(\lambda T\right)^5 \left(\exp\left[\frac{C_2}{\lambda T}\right] - 1 \right)}.$$
(11)

Ввівши новий аргумент $x = (\lambda T) \cdot 10^{-3}$ мкм·К, одержимо на основі формули (11) вираз для відносної густини випромінювання S(x) на ділянці спектра від 0 до x:

$$S(x) = \frac{\int_{0}^{x} x^{-5} \left(\exp\left[\frac{14,4}{x}\right] - 1 \right)^{-1} dx}{\int_{0}^{\infty} x^{-5} \left(\exp\left[\frac{14,4}{x}\right] - 1 \right)^{-1} dx}.$$
(12)

В останньому виразі використано числове значення другої сталої С₂ закону Планка.

Обчислення згідно з виразом (12) показують, що частка густини випромінювання АЧТ на ділянці $x_1 - x_2$ для температурного діапазону від 700 до 2000°С на спектральній ділянці від 0,3 до 10 мкм (робоча спектральна ділянка радіометра) складає:

для
$$t_1 = 700$$
°C $S(x_2) - S(x_1) = 0.93$ (93%);
для $t_2 = 2000$ °C $S(x_2) - S(x_1) = 0.99$ (99%).

Висновки:

Літературні і експериментальні дослідження показали, що роботу радіометра по вимірюванню опромінень від 0 до 50 кВт/м² забезпечує використання в останньому термоелектричного приймача випромінювань, який складається із десятиспайної хромелькопелевої термобатареї, на робочі спаї якої нанесений тонкий пористий шар на основі платини, для якого $a \approx 1$.

З роботи видно, що величина опроміненості залежить тільки від кута *α*, тому форма поверхні протяжного джерела (полум'я) не впливатиме на результати вимірювання опроміненості за умови, що випромінювання є близьким до випромінювання АЧТ.

Слід зауважити, що відносна частка густини випромінювання на спектральній ділянці 0,3–10 мкм збільшується при збільшенні температури (t > 700°C), а оскільки опроміненість росте пропорційно T^4 , то похибка 7% проявиться при порівняно малих значеннях опроміненостей ($E \le 0.1$ кВт/м²), що не є суттєвим під час вимірювання описаним радіометром потужних опроміненостей (до 50 кВт/м²).

СПИСОК ЛІТЕРАТУРИ

- 1. Свет Д.Я. Объективные методы высокотемпературной пирометрии при непрерывном спектре излучения. М: Наука, 1968. 240 с.
- 2. Гордов А.Н. Основы пирометрии. М.: Металлургия, 1971. 448 с.
- 3. Куинн Т. Температура. М.: Мир, 1985. 447 с.
- 4. Хадсон Р. Инфракрасные системы. М.: Мир, 1972. 534 с.
- 5. Шоль И.С. и др. Приемники инфракрасного излучения. М.: Мир, 1969. 269 с.
- 6. Козелкин В.В., Усольцев И.Ф. Основы инфракрасной техники. М.: Машиностроение, 1967. 307 с.
- 7. Фуртак С.П. Пірометричні вимірювання. Житомир: Полісся, 1997. 147 с.
- 8. Олейник Б.Н. и др. Приборы и методы температурных измерений. М.: Изд. стандартов, 1987. 294 с.

* * *