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Abstract — Water-adsorption and desorption processes 
in the modified functional elements based on humidity-
sensitive MgO-Al2O3 ceramics for microelectronics were 
studied using specialized positron annihilation lifetime 
system. It is shown that adsorption of water leads to 
transformation of positron annihilation spectra in the 
MgO-Al2O3 ceramics and reflects increasing of positron 
trapping near grain boundaries of ceramics and ortho-
positronium decaying in nanopores. Fixation of positron 
lifetime components results in changes in positron 
trapping rate. 

Keywords — positron annihilation system; spectroscopy; water-
sorption process; structural analysis 

I.  INTRODUCTION 
It is well-known that functional MgO-Al2O3 ceramics are 

more stable in compare with other porous materials with short 
time to humidity changes [1-3] and can be used as humidity-
sensitive elements in microelectronics [4,5]. It is shown that 
functionality of such materials is appointed by microstructure of 
grain boundaries, grains and pores in ceramics [6]. In addition, 
the functional properties of elements sensing to humidity 
depend on water-sorption properties in their materials. 
Moreover, there are problems connected with preparation of 
nanoporous ceramics with controlled specific surface area, 
amount of open porosity, optimal pore size distributions and 
inner free volumes [6]. Thus, free-volume properties in MgO-
Al2O3 ceramics prepared at different conditions and influence 
on their functionality should be studied carefully. 

Previously, we studied the effects of surface area on initial 
Mg and Al oxides on the structural properties of MgAl2O4 
ceramics prepared at 1100-1400 oC [7-9]. It was shown, that the 
formation of the main spinel MgAl2O4 phase is intensified with 
rise of sintering temperature and duration of ceramics preparation 
[9]. Functionality of spinel ceramics depend on their porous 

structure prepared and different time-temperature conditions. 

Commonly, microstructural properties of ceramics is 
probed by X-ray diffractometry, porosimetry, electron 
microscopy, etc. [10-12]. But to obtaining more information 
on sorption processes in modified functional MgO-Al2O3 
ceramics the new approaches and methods for structural 
analysis should be developed. One of such methods is positron 
annihilation lifetime spectroscopy (PALS) [13,14], known 
experimental tool to investigation of open and closed free 
volumes and defects in solids independent on their structural 
hierarchy [13]. The aim of this work is investigation of water-
moisture processes in the modified MgO-Al2O3 ceramics 
using specialized PALS system. 

II. EXPERIMANTAL 
The investigated functional MgO-Al2O3 ceramics were 

sintered using conventional procedure as was presented 
elsewhere in [7-9,15]. The obtained samples were sintered at 
temperatures (Ts) 1100 oC, 1200 oC, 1300 oC, 1400 oC for 2 h. 
Final humidity-sensitive ceramics are characterized by tri-
modal pore-size distribution with radiuses of open pores of  
0.003, 0.01-0.09 and 0.3-0.4 m [7,9]. 

The PALS spectra for as-prepared samples were recorded 
at temperate of 22 oC and relative humidity of 35 % as well as 
after water-immersion using specialized ORTEC system [7-
9,15,16]. Two identical samples were placed in sandwich 
structure for PALS measurements. Every spectrum was 
investigated with channel width of 6.15 ps. Isotope 22Na was 
exploited as positrons source. 

The selection of corresponding values for measuring 
chamber permit to investigation of samples at constant values 
of RH in the range of 25-60 % with an accuracy of ± 0,5 % 
and 25-98 % з with an accuracy of ± 1 %. Analysis of the 
PALS data were performed using three-component fitting 
procedure, in some cases at fixation of the first and second 
positron lifetimes using LT computer systems [17]. PALS 
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spectra decomposed on three components with 1, 2 and 3 
lifetimes as well as I1, I2 and I3 intensities are shown in Fig. 1. 

 

Fig. 1. Fitting of PALS spectra on three components using LT 
program for the modified MgO-Al2O3 ceramics sintered at 1300 oC 

In addition, using two-state positron trapping model [18,19] 
positron trapping rate in defects (d), positron lifetime in 
defects (b) and average positron lifetime (av.) were calculated. 

III. RESULTS AND DISCUSSION  
The obtained PALS characteristics for the modified MgO-

Al2O3 ceramics sintered at different Ts have a peak and region 
of smooth fading of coincidence counts in time (Fig. 2). 
Mathematically such curves describe by sum of exponential 
functions with different indexes (inversed to lifetimes). 

As has been shown early [7-9, 15,16], the first component of 
PALS spectra with lifetime 1 and intensity I1 as well as the 
second component with lifetime 2 and intensity I2 are related to 
positron trapping modes. The lifetime 2 reflects positron trapping 
on defects located near grain boundaries on ceramic materials. 

In as-prepared ceramic samples obtained at different Ts, the 
shortest 1 and middle 2 positron lifetimes and intensities I1 and I2 
reduced with rises of sintering temperature (Fig. 3).  In spate of 
structural distinction of ceramics sintered at different Ts, positrons 
are trapped in defects with the same rate of d = 0.60 ns-1. 

The third PALS component with lifetime 3 is connected 
with ortho-positronium (o-Ps) decaying. In initial (as-prepared) 
ceramic samples this lifetime reduce from 2.6 to 1.9 ns with Ts, 
but intensity I3 is closed to 0.02. In water-adsorbed ceramics 
lifetime 3 is closed to 1,84 ns, while 3  1.88 ns is related to o-
Ps “pick-off” decaying in water at 20 oC.  In all cases, 
intensity I3 rises from 2 % to 12-15 % testifying large amount of 
adsorbed water in ceramic samples. This change is accompanied 
by reduced in parameters of the first PALS component, but 
parameters of the second component are without changes. 

As demonstrated in [8], in water-adsorbed ceramics d 
parameter increases from 0.6 ns-1 to 0.7 ns-1 in ceramics 
prepared at 1100 oC and to 0.9 ns-1 in ceramics sintered at 
1200-1400 oC. This fact testify that water-adsorption in 
ceramics bulk influences on positron trapping rate in defects. 

 

 

Fig. 2. Positron lifetime spectra for initial and water-moisture MgO-
Al2O3 ceramics sintered at different Ts 

Therefore, to study more considerable changes in positron 
trapping in the modified MgO-Al2O3 ceramics caused by 
absorbed water, the new algorithm is needed to treatment of 
PALS data. This task can be permitted due to fixation of 1 and 
2 parameters because adsorbed water not changes structure of 
spinel ceramics. 
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Fig. 3. Changes in lifetime components in dependence on sintering 
temperature of MgO-Al2O3 ceramics 

As was shown early [25-28], the lifetime 2 is related to 
extended defects near grain boundaries in ceramic materials. 
Positrons are trapped in the same defects in MgO-Al2O3 ceramics 
independent on amount of adsorbed water by their nanopores.  

So, the first and second positron lifetimes (1 and 2) can be 
considered near constant. Therefore, all changes in fitting 
parameters of these components will be reflected in intensities 
I1 and I2. The third lifetime 3 is non-fixed. Treatment of 
experimental PALS data were carried out at fixed lifetimes 
(1=0.17-0.2 ns and 2=0.36-38 ns). At that, the best FIT 
parameters were obtained at constant lifetimes 1 = 0.17 ns and 
2 = 0.37 ns [7]. The I1 and I2 intensities are change 
dependently from amount of adsorbed water in MgO-Al2O3 
ceramics. Thus, rising of relative humidity (RH) from 25 % to 
98 % result in reducing of intensity I1 and increasing of 
intensity I2. The changes of RH from 98 % to 25 % reflects 
inverse to previously described transformation in I1 and I2 
intensities (Fig. 4). The positron trapping in water-immersed 
defects related to the second component is more intensive. The 
lifetimes 3 are near 2.3-2.8 ns. The input of this component is 
not change and intensity is near 1 % [18]. 

In contrast, most significant changes in positron trapping in 
MgO-Al2O3 ceramics caused by water sorption reflect in 
positron trapping rate in defect d (Fig. 4). Thus, the water-
sorption effect in the studied spinel ceramics is accumulated in 
non-direct trapping d parameter [7]. 

 

 

 

Fig. 4. Dependences of positron intensity I2 and positron trapping 
rate d on relative humidity in adsorption-desorption cycles for the 
MgO-Al2O3 ceramics sintered at different Ts 

IV. CONCLUSIONS 
Specialized PALS system is quite reliable method to study 

water-sorption processes in the modified MgO-Al2O3 ceramics. 
It should be noted, that in all ceramic samples (sintered at 
different temperatures with different microstructure and 
content of absorbed water) the same type of positron trapping 
defects prevails. 
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The positron trapping in defects occurs more efficiently in 
water-immersed ceramics due to increase in positron trapping 
rate of extended defects. The more perfect structure of 
ceramics, the more considerable changes occur in the water-
absorbing pores. 

The mathematical treatment of experimental PAL data at 
constant values of reduced bulk and defect-related lifetimes 
allow to refine the most significant changes caused by 
absorbed water in the functional ceramics.  
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