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A DIRECT METHOD OF TEMPERATURE FIELD RESEARCH IN A 
MULTILAYER PIPE IN THE EVENT OF FIRE  

 
There is suggested and substantiated a constructive scheme of unsteady 

temperature field distribution across the thickness of a multilayer pipe in the event of 
fire. The scheme is based on a direct method of research of boundary value problems of 
heat conduction with piecewise continuous coefficients and stationary heterogeneity. 

Keywords: heat conductivity, direct method, multilayer pipe. 
 

1. Introduction. In the present work there is suggested a constructive approach 
to the solution of a mixed problem for the heat conductivity equations with piecewise 
continuous coefficients, which appears when investigating an unsteady temperature 
field in a multilayer pipe.   It comprises the reduction method, the concept of quasi-
derivatives, the modified Fourier method, and the eigenfunction method. As a 
numeric example we considere a model problem of temperature field distribution on 
the thickness of a four-layer pipe in the event of fire.  

2. Problem  statement and its mathematical model. There is considered a mixed 
problem for the heat conductivity equation [1] 

 
, ,1 ,

t r t r
r r r

    (1)

with the system of boundary conditions of the third kind: 
 

[1]
0 0 0 0 0 0 0

[1]

, , ( ),
, , ( ),n n n n n n n

r t r t r r
r t r t r r

    (2)

under the initial condition: 
,0t r r      (3)

 

where 0 1 ... nr r r  is the arbitrary partioning of the interval  0 , nr r of the real axis 

OR into n parts, i - the characteristic function of the interval 1,i ir r , [1]
df

t r t   the  
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quasi-derivative [2]. We set 
1

0
,

n

i i
i

r  
1

0
.

n

i i i
i

c r r c    

We look for the solution of problem (1), (2), (3) according to the following 
scheme [3]: 

The solution of ,t r  should be found using the reduction method [4] 
 

, , ,t r u r v r      (4)

For one of the functions (i.g. for ,u r ) there is solved the quasi-stationary 
problem  

 
,1 0,

du rd r
r dr dr

      (5)

with the boundary conditions (2) for the function ,u r : 
 

[1]
0 0 0 0 0 0 0

[1]

, , ( ),
, , ( ),n n n n n n n

r u r u r r
r u r u r r

    (6)

Solution of a boubdary value problem (5), (6). 

Let us introduce the vector 1,
T

u uu  and the matrix  
10
( )( ) .

0 0
r rA r

The quasi-differential equation (5) is then reduced to an equivalent system of 
differential equations of the first order: 

 
' Au u       (7)

 
Let us write the boundary conditions (6) in a vector form [2] 
 

0 ,nP r Q ru u     (8)

where P , Q  and  have the form 
 

0 0 0 01
, ,

10 0 n n

r
P Q

r
0 0 0 .
n n n

r
r

   (9)

 
At each segment the system (7) has the following form 
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10
, .

0 0
ii i rA Ai iu u     (10)

 
Cauchy matrix ,iB r s  of the system (10) can be presented as follows 
 

ln ln1
, .

0 1
ii

r s
B r s      (11)

For the arbitrary k i  we denote 
 

1 1 2 1 2 1, , , , .
df

k i k k k k k k i i iB r r B r r B r r B r r     (12)

The structure (11) of the matrix ,iB r s  affords the possibility to determine the 
structure of the matrix (12), specifically 

 
1

1ln ln1
, .

0 1

k
m m

m i mk i

r r
B r r     (13)

In each of the intervals 1,i ir r  the solution of the problems (5), (6) has the 
form 

 
0, , , ,i i ir B r r B r ri 0u P      (14)

where  

1

0

11
1

0 0 00 0
0

0 0 0

0 0

0 0 0

0 0

,

ln ln10 01
10 0

0 1

1
1 1

1 1

n

n
i i

i i
n n n n n

n n n n n n

n n n n n

n n n

n n n n n

P Q B r r

r r
rr

r r

r r r
r r r

r r
r r r

0

.
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Expression (14) allows us to write the solution ,ru  over the entire segment 

0 , nr r  using the characteristic function i  in the form  
 

1

0
, , .

n

i
i

r riu u      (15)

For the function ,v r  we will get the mixed problem  
 

, , ,1 .
v r v r u r

c r c
r r r

  (16)

under zero boundary-value conditions for the function ,v r ,  
 

[1]
0 0 0 0

[1]

, , 0,
, , 0,n n n n

r v r v r
r v r v r

     (17)

and the initial condition 
 

, 0 , 0 .v r f u rr r     (18)

Eigenfunction expasion and the Eigenvalue Problem. 
We will seek the solution of the homogeneous differential equation  
 

                         
, ,1v r v r

c r
r r r

        (19)  

in the form  
 

                               , ,v r e R r         (20)

where  is a parameter,  R r  is a still unknown function. 
Substituting (20) into (19), we arrive at a (quasi) differential equation 
 

0,r R c rR       (21)

under boundary-value conditions 
 

[1]
0 0 0 0

[1]
0 0

( ) ( ) 0,
( ) ( ) 0.n n

r R r R r
r R r R r

      (22)

The problem (21), (22) is a classical eigenvalue problem.  
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By introducing the quasi-derevative 1 ,
df

R r R  the vector 1,
T

R RR , 

and the matrix 
10

,
0

r rA r
c r

 we bring the (quasi) differential equation 

(21) to an equivalent system of differential equations of the first order 
 

.AR R       (23)

In each of the intervals 1,i ir r  the system (23) will have the form 
 

10
, .

0
i i ii i

i i

rA A r
c r

R R     (24)

The Cauchy matrix , ,iB r s  of the system (24) has the following form 
 

11 12

21 22

, , .iB r s      (25)

 

where,  1 0 0 1
11 2

i i i i i i

i

s J s N r J r N s
 

0 0 0 0
12 2

i i i i

i

J s N r J r N s
 

2 2
1 1 1 1

21 2
i i i i i i

i

rs J r N s J s N r
 

1 0 0 1
22 2

i i i i i i

i

s J r N s J s N r
 

 
where 0J , 1J   0N , 1N  are the Bessel and Neyman functions of the zero and the first 
kind correspondingly.  

Let us set:  

0 1
0

, , , , ,
df i

i ji i j i j
j

B r r B r r                  (26)

      
1

0 0
0

, , , , , , ,
ndf

i i i i
i

B r r B r r B r r          (27)
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                  11 12
0

21 22

, , .
df

n

b b
P Q B r r

b b
           (28) 

 
We will seek the solution of the system (23) in the form  
 

0, , , ,r B r rR C       (29) 
 

where, 1 2, TC CC  is a nontrivial vector. 
Having applied to the equality (29) the boundary-value conditions (22) and 

accomplishing the transformations, we obtain 
 

0, , 0.nP Q B r r C      (30) 
 

For the existence of the vector  C  in (30) , it is necessary and sufficient to 
fulfill the following conditions 

0det , , 0.nP Q B r r      (31) 
 

The the characteristic equation of the eigenvalue problem (21), (22) has the 
form (31). 

Under the condition (30), the nontrivial vector C  has the form 

0 0

1 , 1 .
T

r
C      (32) 

 
The eigenvectors of the system of differential equations (23) under boundary-

value conditions (22) have the following structure 
 

0
0 0

1, , , , 1 , 1,2,3,... .
T

k kr B r r k
r

R   (33) 

 
The eigenfunctions ,k kR r as the first coordinates of the eigenvectors

,k krR can be written in the following form 

0
0 0

1, 1, 0 , , , 1 ,

1,2,3,... .

T

k k kR r B r r
r

k

       (34) 

 

In particular, since 
1

0

, , ,
n

k k ki k i
i

R r R r  equation (34) leads to 
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0
0 0

1, 1, 0 , , , , , 1 .Tki k i i k i kR r B r r B r r
r

        (35) 

 
Eigenfunction Method. We will seek the solution of the problem (16)-(18) in 

the following form  

1

, , ,k k k
k

v r T R r       (36) 

 
where kT  are unknown functions . 

Since the derivative u  enters into the right-hand side of  (16), we expand it 

into the Fourier series in the eigenfunctions of , .k krR  
 

1

,k k k
k

u u R r      (37) 

 
The expansion of the function  g r  into Fourier series in the eigenfunctions 

,k kR r  of the boundary-value problem (21), (22) has the form 

            
1

, ,k k k
k

g r g R r                            (38) 

 
where Fourier coefficients kg  can be found with the following formula 
 

    
1

0

1

2 2
0

1 1, , .
n i

i

r rn

k k k i i i ki k
ir rk k

g c g r R r rdr c g r R r rdr
R R

    (39) 

 
Note that 2

kR is a square of the norm of eigenfunctions kR  
 

                    
1

0

1
2 2 2

0
, , .

n i

i

r rn

k k k i i ki k
ir r

R c rR r dr c R r rdr      (40) 

Substituting (36) into (16) we obtain the equality  
 

1

1 1

,

1 , , .

k k k
k

k k k k k k
k k

c T R r

T r R r c u R r
r

   (41) 
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Taking into account the equality (20), after the transformations we obtain
 

1
, 0.k k k k k k

k
T T u R r    (42)

Equating the Fourier coefficients of series (42) to zero, we obtain a set of 
differential equations 

0, 1,2,3,... .k k k kT T u k      (43)

The general solution of each of these equations has the form 
 

0

,kk s
k k kT C e e u s ds         (44)

where kC  is an unknown constant. To obtain its definition, we use the expansion of 
the function f r  from the initial condition (18) into a Fourier series 
 

1
,0 , .k k k

k
v r f r f R r     (45)

Comparing the corresponding Fourier coefficients, we arrive at the conclusion 
that .k kC f  

Thus we end-up with the solution of the mixed problem (16)-(18) in the form 
of a series:  

1

1 00

, , , ,kk

n
s

k k k k i i
k i

v r f e e u s ds R r v r  (46)

 
Taking into account the image (4) as well as formulas (15) and (46) we obtain 

the solution of the problem (1)-(3) in the form 
 

1

0
, , , .

n

i i i
i

t r u r v r      (47)

3. Numerical example. As a numerical example we consider a four-layer pipe
consisting of isotropic materials with the following radiuses: 0 0,15 ,r m

1 0,154 ,r m  2 0,164 ,r m  3 0,214 ,r m  4 0,216 .r m  It is necessary to determine the
distribution of nonstationary temperature field and the density of the heat flow across 
the thickness of the pipe, if to the left from the pipe there is a fire with the 
temperature varying  according to the following law

0,32 3,8
. 660 1 0,687 0,313 18extt  [5], and inside there is liquid with the 
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temperature of  018 C . At the initial moment the pipe temperature is 018 C . The 
thermophysical characteristics of the materials are specified in Table 1. 

 
Table 1 - Thermophysical characteristics 

 

Parameter Layer 1 Layer 2 Layer 3 Layer 4

Thermal conductivity coefficient 
W,

m K
 58 0,27 0,056 209

Specific heat capacity 
J,

kg
c

K
 470 1680 940 894

Density 3

kg,
m

 7800 1000 200 2680

Heat transfer coefficient 

2, W
m K

 
Inside   0 4 , 

Outside  25n  

 
Using the method suggested by the authors, as well as  the software Maple 13, 

[6], we obtain the solution of the given problem on the distribution of the 
nonstationary temperature field and the density of the heat flow in the form of the 
graph (see pictures  1 and  2) as well as Tables 2 and 3. 

 
 

 
Picture 1 - The distribution of the  

temperature field 

 
Picture 2 - The distribution of the density 

of the heat flow 
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Table 2 - The distribution of the temperature field 
 

Time, s 
Coordinates, m 

0,
15

 

0,
15

4 

0,
16

4 

0,
17

 

0,
2 

0,
21

4 

0,
21

6 

120 18 18 18 19 21,5 151 151 
300 18 18 18,3 20,6 65 345 346 
600 18 18,1 18,4 21,3 180 521 521 
1200 19,1 19,2 24 47,7 340 617 618 
1700 22,7 22,8 32,5 75,1 406 635 636 
3600 51,5 51,5 70,2 138 488 651 651 

 
Table 3 - The distribution of density of the heat flow 

 

Time, s 
Coordinates, m 

0,
15

 

0,
15

4 

0,
16

4 

0,
17

 

0,
2 

0,
21

4 

0,
21

6 

120 0 0 0 12 65 1467 7208 
300 0 0 6 8.6 446 2020 6021 
600 0 0 24 28 881 1836 3449 
1200 6 62 212 241 954 1218 1484 
1700 20 159 390 413 855 957 1049 
3600 134 369 640 639 662 645 652 
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