2018 International Scientific and Practical Conference
 IEEE Problems of Infocommunications. Science and Technology
 UKRAINE SECTION

Modeling of Boundary-Value Problems of Heat Conduction for Multilayered Hollow Cylinder

Roman Tatsiy ${ }^{1}$, Marta Stasiuk ${ }^{1}$, Oleg Pazen ${ }^{2}$, Sergiy Vovk ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics and Mechanics, ${ }^{2}$ Department of Monitoring and Fire Prevention Lviv State University of Life Safety
Lviv, Ukraine
opazen@gmail.com

The paper proposes the solution of the boundary value problem for the distribution of a non-stationary temperature field along the thickness of a multilayer hollow cylinder. The basis of the solution is the reduction method, the quasi-derivative concept, the modified Fourier method, and the problem of eigenvalues. The obtained analytical solution is modeled as a pseudocode and implemented on a specific numerical example.

REQUEST OF THE PROBLEM AND ITS

MATHEMATICAL MODEL

The problem of the distribution of a non-stationary temperature field in the thickness of a hollow cylinder is reduced to a solution on the interval $\left[r_{0} \neq 0\right.$, r_{n}] of the differential equation:

$$
\begin{equation*}
c \rho \frac{\partial t(r, \tau)}{\partial \tau}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \lambda \frac{\partial t(r, \tau)}{\partial r}\right), \tag{1}
\end{equation*}
$$

with the Newton's boundary condition

$$
\left\{\begin{array}{l}
\alpha_{0} r_{0} t\left(r_{0}, \tau\right)-t^{[1]}\left(r_{0}, \tau\right)=\alpha_{0} r_{0} \psi_{0}(\tau), \tag{2}\\
\alpha_{n} r_{n} t\left(r_{n}, \tau\right)+t^{[1]}\left(r_{n}, \tau\right)=\alpha_{n} r_{n} \psi_{n}(\tau),
\end{array}\right.
$$

and the initial condition

$$
\begin{equation*}
t(r, 0)=\varphi(r) \tag{3}
\end{equation*}
$$

where $t(r, \tau)$ - is a temperature, ${ }^{0} \mathrm{C} ; t^{[l]}(r, \tau)=r \lambda t{ }_{r}$ - denotes a quasiderivative; α_{0} and α_{n} - coefficients of heat exchange between the fire medium and the cylinder surfaces, $\mathrm{W} / \mathrm{m}^{2} \cdot{ }^{0} \mathrm{C} ; \psi_{0}(\tau)=345 \lg ((8 \tau / 60)+1)+20-$ the law of changing the temperature of the fire medium (standard temperature mode); $\psi_{0}(\tau)=20$ - temperature of the medium from the inside of the cylinder; τ-time, s .

COMPUTER SIMULATION

To solve the problem, we will conduct a computer simulation of a pseudocode solution for the computer algebra system

1) assign the values of the corresponding coefficients and notations of the problem: $r_{0}:=0.2$: $r_{n}:=0.5: \quad c:=840: \rho:=2400: \quad \lambda:=2.5: \quad \alpha_{0}:=20: \quad \alpha_{n}:=4:$ $\psi_{0}:=\tau \rightarrow(345 \cdot \log 10(8 \cdot \tau+1)+20): \quad \psi_{\mathrm{n}}:=\tau \rightarrow 20: \quad \varphi:=\mathrm{x} \rightarrow 20:$ $\alpha(\omega):=\sqrt{\frac{c \cdot \rho \cdot \omega}{\lambda}}: \quad \alpha\left(\omega_{i}\right):=\sqrt{\frac{c \cdot \rho \cdot \omega_{i}}{\lambda}}:$
2) assign the values of the corresponding matrices and vector: $\mathrm{Br}:=$ Matrix $([1,(\operatorname{lnr}-\operatorname{lnr}) / \lambda],[0,1]])$:
$B:=\operatorname{Matrix}\left(\left[\left[1,\left(\ln r_{n}-\ln r_{0}\right) / \lambda\right],[0,1]\right]\right):$
P: =Matrix([[$\left.\left.\left.\alpha_{0} r_{0},-1\right],[0,0]\right]\right)$:
Q:=Matrix([[0, 0],[$\left.\left.\left.\alpha_{n} r_{n}, 1\right]\right]\right):$
$\beta_{11}=\frac{\pi \lambda \alpha r_{0}\binom{J_{1}\left(\alpha r_{0}\right) \cdot N_{0}\left(\alpha r_{n}\right)-}{-J_{0}\left(\alpha r_{n}\right) \cdot N_{1}\left(\alpha r_{0}\right)}}{2 \lambda}: \beta_{12}=\frac{\pi\binom{J_{0}\left(\alpha r_{0}\right) \cdot N_{0}\left(\alpha r_{n}\right)-}{-J_{0}\left(\alpha x_{n}\right) \cdot N_{0}\left(\alpha r_{0}\right)}}{2 \lambda}:$
$\beta_{21}=\frac{\pi \lambda^{2} \alpha^{2} r_{n} r_{0}\binom{J_{1}\left(\alpha r_{n}\right) \cdot N_{1}\left(\alpha x_{0}\right)-}{-J_{1}\left(\alpha x_{0}\right) \cdot N_{1}\left(\alpha r_{n}\right)}}{2 \lambda}: \beta_{22}=\frac{\pi \lambda \alpha x_{0}\binom{J_{1}\left(\alpha r_{n}\right) \cdot N_{0}\left(\alpha r_{0}\right)-}{-J_{0}\left(\alpha x_{0}\right) \cdot N_{1}\left(\alpha r_{n}\right)}}{2 \lambda}:$
$B \omega:=\operatorname{Matrix}\left(\left[\left[\beta_{11}, \beta_{12}\right],\left[\beta_{21}, \beta_{22}\right]\right]\right):$
$\Gamma:=\operatorname{Vector}\left(\left[\alpha_{0} r_{0} \psi_{0}(\tau), \alpha_{n} r_{n} \psi_{n}(\tau)\right]\right)$:
3) find the initial vector: $P_{0}:=P+Q \cdot B$:

The results of calculations can also be displayed in the form of explicit formulas, graphs, animations, tables, etc.

Conclusion

The use of information technologies and methods of mathematical and computer modeling enables to quickly and clearly model certain phenomena or processes that arise during certain scientific researches. Using this approach significantly accelerates the time of research (compared with experimentally) and reduces the cost of scientific research.
The proposed direct method for calculating the temperature field in the plane structure can be used to study non-stationary thermal processes without the use of approximate and operational methods. Implementation of the results of such research has significantly reduced the time and amount of computing in determining the temperature distribution in plane structures, as well as improve the accuracy of the calculation in comparison with the approximate methods.

