
Chapter 29
Structural Study of the Modified
Cu0.4Co0.4Ni0.4Mn1.8O4
and Cu0.1Ni0.8Co0.2Mn1.9O4 Ceramics
Using Combined Methods

H. Klym, I. Hadzaman, A. Ingram, O. Shpotyuk, I. Karbovnyk, Yu. Kostiv,
I. Vasylchyshyn, and D. Chalyy

29.1 Introduction

Temperature-sensitive spinel ceramics based on transition metal manganites with
topologically disordered structures is one of the perspective materials for tempera-
ture sensors and other practical applications [1–3]. The main structural elements in
these materials are grain, grain boundaries, and pores depending on technological
procedure of ceramic sintering [4, 5]. Understanding of correlation between grain-
porous and free-void structures as well as physical properties of such materials
is still in focus of scientific and commercial interests for scientists across the
globe [6, 7].

In ceramics, depending on the sintering temperature, shrinkage of the atomic
structure occurs, eventually leading to more or less complex pore topology [8–10].
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These pores along with specific vacancy-type defects within individual crystalline
grains and grain boundaries represent free-volume structure of ceramics. In addi-
tion, previous investigations have shown that in temperature-sensitive spinel-type
ceramics, the quantity of the additional phase and its distribution in bulk and on the
surface of ceramic samples are essentially influenced by temperature-time sintering
regimes [5, 11].

But technological modification of spinel ceramics results in stabilization of
functional properties of ceramics. So, in Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics, metallic
additives located in intergranular regions closely to grain boundaries diminish
thermally activated aging phenomena owing by stabilizing the cationic distribution
within individual ceramic grains. As a result, the chemically modified ceramics
show higher stability in comparison with non-modified ones [4, 12].

Because of significant complications in the structure of spinel-type ceramics
revealed at the levels of individual grains, grain boundaries, and pores [13], the
further progress in this field is dependent to a great extent on the development of new
characterization techniques, which can be used in addition to traditional ones (scan-
ning/tunneling electron microscopy, porosimetry methods, etc.). This concerns, in
part, the positron annihilation lifetime (PAL) spectroscopy, the alternative method
only recently applied to fine-grained powders, nanostructured glasses, and ceramics
[14, 15]. In general, the PAL reflects a so-called free-volume distribution within
structural network of solids.

It was shown previously [16–18] that in the case of ceramics, PAL data are
determined mainly by crystallographic features of individual grains, while structural
disturbances due to grain contacts inside ceramics were a subject for additional
complications. This is why the measured positron lifetime spectra for sintered
ceramics can be adequately explained within a unified positron annihilation model
involving discrete positron trapping and ortho-positronium (o-Ps) decay modes,
the best fitting being achieved using at least three independent components in the
resolved lifetime spectra (two for positron trapping and one for o-Ps decaying)
[11, 16–19]. In terms of this model, the second positron trapping component with
lifetime τ 2 is attributed to free-volume defects such as neutral or negatively charged
vacancies especially near grain boundaries. The shortest component named the
reduced bulk positron lifetime τ 1 is mainly due to annihilation in defect-free bulk
with small mixing from other positron trapping channels. The largest component
at the level of a few nanoseconds is responsible for a so-called o-Ps “pick-off”
annihilation [18, 20].

The main aim of this work is structural study of the technologically modified
Cu0.4Co0.4Ni0.4Mn1.8O4 and Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics using alternative
PAL technique in comparison with scanning electron microscopy (SEM) and
porosimetry methods [8, 21].
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29.2 Preparation of Modified Ceramics

Macro- and micro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics was obtained via
traditional ceramic technology as was described in greater details elsewhere [4, 12,
16, 20, 22]. Equal molar amounts of initial powders were mixed in a planetary ball
mill for 96 h in an environment with acetone to obtain mixture. The aqueous solution
of polyvinyl alcohol was used for obtaining of the molding powder. Bilateral com-
pression was performed in steel molds. After pressing these samples were sintered
in a furnace at maximal temperature (Ts) 1100 Ñ´ for 2 h. To validate PAL investiga-
tions performed, we divided the Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics into two groups
presumably not affecting lifetime spectra – the Cu0.4Co0.4Ni0.4Mn1.8O4-micro- and
Cu0.4Co0.4Ni0.4Mn1.8O4-macro-modified ceramics prepared by preliminary sifting
of powder through fine (with 0.1 mm pores) and more rough sieve (0.5 mm pores). In
both cases, the sizes of intrinsic pores are too large to change significantly positron
annihilation spectra [20].

To preparation of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics, the precise amounts of high
purity and previously tested carbonate salts were weighted and wet mixed. This
mixture was thermally decomposed in the air at 700 ± 5◦C for 4 h [12, 16]. Then
the obtained powders were milled, blended with organic binder, and pressed into
the disks of approximately 10 mm in diameter and 1 mm in thickness. The prepared
four batches of blanks were sintered in the air in respect to the time-temperature
regimes (see Fig. 29.1).

It should be noted the sintering route of ceramics was performed to ensure
all necessary conditions for inhibition effect in degradation [23], the content of
additional NiO phase with NaCl-type structure having decisive role in the final
ceramic structure. In fact, we deal with Ni-deficient ceramics in respect to stoichio-
metric Cu0.1Ni0.8Co0.2Mn1.9O4 composition taken as start one in disproportionality
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Fig. 29.1 Time-temperature sintering regime for Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics [16]
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calculations. Four batches of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics with 1–12% of NiO
phase were prepared owing to different amounts of thermal energy transferred
during the sintering (batch No. 1–1% NiO, batch No. 2–8% NiO, batch No. 3–10%
NiO, batch No. 4–12% NiO). The latter was numerically determined as square value
restricted by temperature-time curve above straight line corresponding to 920 ◦C,
which is the temperature of monophase Cu0.1Ni0.8Co0.2Mn1.9O4 ceramic formation
[16, 23].

29.3 Experimental Details

Structures of grains, grain boundaries, and pores for micro- and macro-modified
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics were studied using LEO 982 microscope [20,
24]. Pore size distribution in the region from 2 to 300 nm was investigated with
Hg-porosimetry (POROSIMETR 4000) [11, 20, 21].

Microstructure of the Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics was probed using elec-
tron microscope JSM-6700F, cross sections morphology of the samples being tested
near surface (0–70 μm depth) and chip centers.

PAL measurements for all samples of ceramics were performed using ORTEC
spectrometer at temperature of 20 ◦C and relative humidity of ∼35% [11, 16–18,
25]. The isotope 22Na was used as positron source. The two identical samples of
ceramics were placed in the both sides of the source. The PAL spectra were treated
by LT computer program [26]. For each pair of ceramic samples, we used three
measured positron annihilation spectra. The best results were obtained at three-
component fitting procedure with parameters of each components (τ 1, I1), (τ 2, I2),
and (τ 3, I3) for micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics and
two-component component fitting procedure with parameters (τ 1, I1), (τ 2, I2). Such
parameters as average positron lifetimes τ av, positron lifetime in defect-free bulk
τ b, and positron trapping rate in defects κd were calculated using two-state positron
trapping model [26, 27]. The difference (τ 2 − τ b) can be accepted as a size measure
of extended defects where positrons are trapped, and the τ 2/τ b ratio represents the
nature of these defects [28].

29.4 Results and Discussion

29.4.1 Micro- and Macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4
Ceramics

According to our X-ray diffraction investigations, the micro- and macro-modified
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics are preferentially of single spinel phase with
lattice parameter of a = 8.365 Å [4, 20]. The XRD patterns for the micro- and
macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics are shown in Figs. 29.2 and 29.3.
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Fig. 29.2 Experimental (rings), theoretical (line), and difference XRD pattern (down) for micro-
(a) and macro-modified (b) Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics (row of reflexes is the basic spinel
phase)

In respect to SEM investigations, the Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics con-
tained large grains (∼10 mm) as well as relatively sharp grain boundaries. So-called
“closed” pores have a spherical form and are located mainly near grain boundaries.
As it is obvious from electron micrographs (Fig. 29.4), micro- and micro-modified
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics differ only by pores [20]. The neatly shaping
grains with comparatively tiny pores (∼1 mm) are characteristic for micro-modified
Cu0.4Co0.4Ni0.4Mn1.8O4 samples, while macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics contain similar crystalline grains with larger pores (reaching in size up to
∼10 mm).
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Fig. 29.3 Comparison of experimental XRD patterns for crystalline phase of micro- (a) and
macro-modified (b) Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics

Fig. 29.4 Scanning electron micrographs for micro- (a) and macro-modified (b)
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics

Open pore size distributions for micro- and macro-modified Cu0.4Co0.4Ni0.4
Mn1.8O4 ceramics are shown in Fig. 29.5. Such distributions cover significant
amount of charge-transferring nanopores depending on sintering procedure and
small amount of communication mesopores [11, 20]. In contrast to humidity-
sensitive MgAl2O4 ceramics, temperature-sensitive Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics practically do not possess outside-delivering macropores depending
on specific surface area of initial powder [5]. Thus, Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics prepared at 1100 ◦C exhibit so-called one-modal pore size distribution
with maximum position near 2 nm and double-maximum near 2.3 and 5.5 nm for
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Fig. 29.5 Pore size distributions of micro- (a) and macro-modified (b) Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics

micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics, respectively (Fig.
29.5).

Let’s try to discuss the results (Table 29.1) obtained within positron trapping
model by accepting that structural peculiarities of spinel ceramics are associated
mainly in the first PAL component (τ 1, I1). The second component (τ 2, I2)
corresponds directly to free-volume positron traps (voids in the form of vacancy-
like clusters, agglomerates, etc.) located near grain boundaries [11, 16, 20]. It means
that input of the first component in the PAL spectra will be, in part, a determinant
of the average electron density distribution reflected structural compactness of
the testes network. The τ 2 lifetime is associated with the size of voids and the
intensity I2 is proportional to the amount of voids in the case of the same defect-
free bulk annihilation lifetime [16, 20]. The third component (τ 3, I3) corresponds
to o-Ps annihilation in nanopores. In spite of small value of I3 intensity (2%),
this component cannot be removed without losses in the quality of the fitting
procedure. The similar component was detected in many porous materials with
different structural type [16, 29]. In addition, the third component can be related
with o-Ps “pick-off” annihilation in water absorbed by materials [29]. We don’t
exclude the meaning of other positron annihilation channels in this PAL component
too, such as para-positronium (p-Ps) decaying with character lifetime of 0.125 ns
[14]. But their influence is negligibly small, if the above requirement on close
positron affinity will be more or less kept within a whole positron trapping
medium [30].

As it was shown in Tables 29.1 and 29.2, micro- and macro-modification of
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics during preparation does not influence their fitting
parameters. As a result, such positron trapping modes as positron lifetime in defect-
free bulk τ b, average positron lifetime τ av., positron trapping rate of defect κd, size
of extended defects, where positrons are trapped (τ 2 − τ b), and ratio represents
the nature of these defects (τ 2/τ b) [14, 21] remain unchanged. Obviously, pores
of large examination by SEM and Hg-porosimetry do not modify significantly
the measured positron lifetime spectra, testifying in a favor of correctness of the
performed measuring and fitting procedures.
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Table 29.1 Fitting parameters of LT computer program describing positron annihilation in the
micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics

Fitting parameters Component input
Sample τ 1, ns I1, a.u. τ 2, ns I2, a.u. τ 3, ns I3, a.u. τ 1I1, ns τ 2I2, ns τ 3I3, ns

Cu0.4Co0.4
Ni0.4Mn1.804
(macro)

0.21 0.78 0.37 0.20 1.85 0.02 0.16 0.07 0.04

Cu0.4Co0.4
Ni0.4Mn1.804
(micro)

0.22 0.77 0.38 0.21 1.83 0.02 0.17 0.08 0.04

Table 29.2 Positron trapping modes in the micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4
ceramics calculated within two-state positron trapping model and free-volume characteristics

Free-volume characteristics Positron trapping modes

Sample
Rocta,
Å

Rtetra,
Å

R (Tao-Eldrup),
nm

τ av.,
ns

τ b,
ns

κd,
ns−1

τ 2 − τ b,
ns τ 2/τ b

Cu0.4
Co0.4
Ni0.4
Mn1.804
(macro) 0.69 0.64 2.74 0.24 0.23 0.4 0.14 1.6
Cu0.4
Co0.4
Ni0.4
Mn1.804
(micro) 2.72 0.25 0.24 0.4 0.14 1.6

As was shown early in [20], the potential positron traps in functional spinel-type
ceramics are tetrahedral and octahedral cation vacancies. The average volume of
these tetrahedrons Vtetra and octants Vocta can be selected as free-volume parameters
for spinel-structured ceramics.

The radii of tetrahedral and octahedral sites in a spinel structure can be calculated
using lattice parameter a [20]:

Rtetra = √
3

(
u − 1

4

)
a − R0, (29.1)

Rocta =
(

5

8
− u

)
a − R0 (29.2)

where u is oxygen parameter and R0 is oxygen atom with radius of 1.32 Å.
The oxygen parameter u in oxide spinels is near 0.385 and insignificantly

depends on cation type [4, 16]. The radius of tetrahedral vacancies in
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics is 0.64 Å, which gives Vtetra in spherical
approximation ∼1.10 Å3. The volume of octahedral vacancies Vocta is ∼1.37Å3.
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As it was noted [20], positrons have a preference to annihilate in octahedral
vacancy sites as it follows from charge density distribution in partially
inverted spinel structures. But the calculated ratio between the first component
inputs in the PAL spectra for previously studied MgAl2O4 ceramics [20, 31]
and Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics (0.78) is closer to the ratio between
corresponding volumes of tetrahedral vacancies (0.76) rather than octahedral
ones (0.69). Consequently, in the studied Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics in
contrast to nanocrystalline ferrites [14], positron trapping in tetrahedral vacancies
predominates in the first PAL component. The positron trapping in octahedral
vacancies is character to inverse spinel structure.

It is evident that octahedral monovacancies themselves do not play a decisive
role in the second component of PAL spectra. This component is associated with
more extended agglomerates such as vacancy-like clusters and nanovoids. They
appear, as a rule, near grain boundaries, where ceramic structure is more defective.
The characteristic volumes of these clusters are larger in ceramics with a more
stretched pore structure. In seats where ceramics are composed of very small grains
with divaricated grain boundaries and tiny pores, the positrons are prepped more
effective.

Recently, PAL spectroscopy started to be used as an alternative porosimetry
technique to characterize the local free volumes first of all in both open and closed
nanopores [14, 32, 33–35]. The PAL method is particularly effective when Ps is
formed. In disordered solids, Ps is usually organized in two ground states (p-Ps and
o-Ps) and localized in the pores and free volumes [33–35]. Usually, quantification
is based on the analysis of o-Ps lifetime (the lifetimes of the third component
τ 3 in Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics correspond to o-Ps lifetime). The o-Ps
“pick-off” annihilation depends on the size of holes and gives additional important
information on the void structure of the materials [35]. Despite small I3 intensity for
Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics, it is possible to estimate the average nanopore
size from o-Ps lifetime in a given material [51]. Assuming approximately spherical
shape of the free volume, the o-Ps lifetime (τ o-Ps) in oxide materials can be related
to the average radius of pores (R) by semiempirical Tao-Eldrup equation [36, 37]:

τo−Ps =
[

2

(
1 − R

R + �R
+ 1

2π
sin

(
2πR

R + �R

))
+ 0.007

]−1

, (29.3)

where �R is the empirically determined parameter (in the classical case �R ≈
0.1656 nm), describing effective thickness of the electron layer responsible for the
“pick-off” annihilation of o-Ps in the pore [36, 37].

In functional Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics, there is one o-Ps PAL compo-
nent with small intensity (2%). Therefore, τ 3 lifetime can be related to correspond-
ing pores via Tao-Eldrup model. The τ o-Ps value of around ∼1.8 ns (τ 3 in Table
29.1) corresponds to nanopores with radius (R) distribution centered near ∼0.27 nm.
This result is addition to Hg-porosimetry measurements. In addition, it should be
noted that porosimetry methods are limited to open pores, which should have an
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access to the environment to be determined. On the other hand, PAL spectroscopy
can probe both open and closed pores in functional oxide ceramics of sizes ranging
from atomic scale to several tens of nanometers.

29.4.2 Technologically Modified Cu0.1Ni0.8Co0.2Mn1.9O4
Ceramics

In respect to the results of microstructure characterization with X-ray diffractometry
method, the lattice constant of the main spinel was slightly grown from 8.38 ÇÑ
8.41 Å without significant changes in the parameter of additional NiO phase (at the
level of 4.17–4.19 Å) despite increase in the content of this phase from 1 to 12%
[16].

To explain the above phenomena, microstructure of the prepared ceramics
was studied. As it follows from Fig. 29.6, the prepared ceramic samples differ
significantly by their grain-pore microstructure.

The samples of batch No. 1 (Fig. 29.6a) are characterized by fine 1–3 μm grains.
The numerous intergranular pores are small enough in these samples, their sizes not
exceeding 1–2 μm. White film, which can be attributed to additional NiO phase
extractions, weakly appears in these ceramics mainly near intergrain boundaries;
sometimes it partially fills of pores. The samples of batch No. 2 (Fig. 29.6a) are
characterized by larger grains with sizes near 5–7 μm, some of them achieving
10 μm. The white NiO film appears in these ceramics only in the regions of
grain boundaries. The grain structure of the samples of batch No. 3 (Fig. 29.6c)
gradually changes. The corresponding chip structure of these ceramics is more
monolithic, it being characterized only by separate pores with 1–3 μm in sizes.
White NiO film appears as bright layer of 10 μm thickness on the grain surface
of these samples. In contrast, the grain structure of the samples of batch No. 4
(Fig. 29.6d) attains fully monolithic shape. Only some individual pores of relatively
large sizes (near 3–5 μm) are observed in these ceramics, the NiO appearing as
uniform layer on the whole ceramic surface. The observed additional NiO phase
is nonuniformly distributed within ceramic bulk, being more clearly pronounced
near grain boundaries. These phase extractions serve as specific trapping centers for
positrons penetrating ceramics.

Investigation of element composition of grain for Cu0.1Ni0.8Co0.2Mn1.9O4
ceramics specifies on their stoichiometry (Fig. 29.7). However basic influence on
the structural processes in material open and closed pores formed by modification
on the stage of sintering is realized.

By accepting two-state positron trapping model [27, 28], for spinel-type ceramic
materials, the first component of spectra was connected with main spinel structure
and the second one – with extended defects located near grain boundaries in the
vicinity of additional extracted phases. The intensity I1 corresponds to the amounts
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Fig. 29.6 Microstructure of modified Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics: (a) batch No 1 (1 %
NiO), (b) batch No 2 (8 % NiO), (c) batch No 3 (10 % NiO), (d) batch No 4 (12 % NiO)
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Fig. 29.7 Elemental composition of grain for Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics
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of the main spinel phase, while the I2 intensity to the amount of addition NiO phase
near grain boundaries.

The lifetime of the first and second components for Cu0.1Ni0.8Co0.2Mn1.9O4
ceramics is typically for spinel-structured materials and equals ∼ 0.37 and 0.20 ns,
accordingly (Table 29.3). The lower τ 1 value in the batch No. 2 (0.17 ns) well
correlated with Ni content in different crystallographic positions. Since the amount
of grain/pores in the sample of batch No. 2 was greater, the process of positron
trapping in these ceramics was more intensive (the positron trapping rate of defects
increased from 0.48 to 0.62 ns−1).

The intensity of the second component for samples of batch No. 1 is 18% (Table
29.3, Fig. 29.8), although amount of additional NiO phase in this batch is small
(1%). This additional phase is localized near grain boundaries and partly fills pores.
In samples of batch No. 2, the intensity I2 increases to 21% correspondingly to
amount of NiO phase.

In batch No. 3 ceramics, the grain-pore structure was not developed because of
occurred monolithization process accompanied by surface extraction of additional
NiO phase. The same was character for batch No. 4 ceramic samples.
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These transformations were in good agreement with positron trapping rate in
defects (Table 29.3, Fig. 29.8). Nevertheless, there were no significant changes in
τ av., τ b, τ 2/τ b, and (τ 2 − τ b). In all cases, the same type of positron trapping
center is formed. The character size of these extended positron traps near grain
boundaries estimated due to (τ 2 − τ b) difference is close to single-double atomic
vacancies [16].

29.5 Conclusions

Structural peculiarities of temperature-sensitive Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics
caused by micro- and macro-modifications as well as Cu0.1Ni0.8Co0.2Mn1.9O4
ceramics related with monolithization processes were studied using traditional
structural methods in comparison with PAL technique. It is shown that adequate
characterization methodology for free-volume defects in the modified spinel ceram-
ics can be developed in terms of positron trapping model. The first component
on the positron lifetime spectra has shown microstructure specificity of the spinel
ceramics with octahedral and tetrahedral cation vacancies. The extended defects
near grain boundaries (voids) are reflected by the second component. The small third
component is due to “pick-off” annihilation of o-Ps in the intergranular nanopores.
The observed o-Ps lifetime ∼1.8 ns is related to the nanopores with radius of
∼2.7 nm based on classic Tao-Eldrup equation. The reported data gives additional
information to Hg-porosimetry and SEM results.

In the case of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics, the results of PAL measure-
ments confirm the interphase mass transfer processes caused by monolitization
processes in ceramics during technological modification and owing to optimal
content of additional NiO phase. Obtained results are in well agreement with
microstructural X-ray diffractometry and electron microscopy data, confirming the
structural changes in these ceramics caused by their technological modification.
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