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Abstract— A complex fractional order transfer function of 
the voltage divider on the basis of the supercapacitor has been 
approximated by a particle swarm optimization method using 
a number of simple fractional order transfer functions 
proposed, and such approximation accuracy has been 
estimated through comparison of transition and frequency 
characteristics. The advantages of approximating a complex 
transfer function of the voltage divider based on the 
supercapacitor using the fractional order transfer functions 
have been shown. A comparative analysis of the results 
obtained for the different transfer functions has enabled 
drawing the conclusion about high degree of their coincidence 
and the possibility of their application for further studies. 
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I. INTRODUCTION 

Supercapacitors, also referred to as ultracapacitors or 
ionistors, are the special two-layer electrochemical 
capacitors on the basis of organic or inorganic electrolyte, 
which, compared to conventional "dry" or electrolytic 
capacitors, have a double electrode layer at the border of the 
electrolyte. By its characteristics, a supercapacitor is located 
between a conventional capacitor and a chemical current 
source, such as a battery. 

The thickness of the double electric layer in the 
supercapacitor is very small, which means that the energy 
stored in it is much higher in comparison with conventional 
capacitors. An important feature of the supercapacitor is the 
fact that the use of a double electric layer can significantly 
increase the electrode surface area, compared to the 
conventional capacitor dielectric. The specific capacity of 
the supercapacitor reaches tens of F/cm3, at a nominal 
voltage of just a few volts. That is, supercapacitors are 
characterized by the high value of power density, low 
losses, durability, the ability to withstand a large number of 
charge / discharge cycles, relatively small dimensions, 
simplicity of the charging process. 

The development of supercapacitors is now taking place 
in two main areas: high-capacity supercapacitors for 
transport and industry, in particular for the rapid energy 
accumulation while braking an electric car or any other 
electric vehicle and its delivery during acceleration, and 
supercapacitors of relatively small capacity for a variety of 
computer hardware technology, robots, mobile phones, 
camcorders, toys, etc. In the field of microelectromechanical 
systems (MEMS), there is a great need for the creation and 

application of compact high-capacity supercapacitors as 
micro-energy sources for low-power drives of various 
devices and sensors [1]. 

The increasing interest in the use of supercapacitors has 
necessitated the design and modelling of such systems, from 
which followed the need to create their models. Initially, a 
simple integer model (Fig. 1a) and the equivalent 
supercapacitor model, based on the combination of RC-
elements (Fig. 1b) were proposed [2,3]. Such models were 
investigated and their advantages and disadvantages were 
identified. Further, due to the development of fractional 
calculus and the need to improve the models accuracy, this 
calculus was increasingly used to create new models of 
supercapacitors (Fig. 1c) and to improve the old ones (Fig. 
1b). 

 

Fig. 1. Models of supercapacitors: a) ideal supercapacitor; b) equivalent 
supercapacitor model based on series and parallel resistances; c) equivalent 
supercapacitor model using fractional calculus 

The analysis of the physical processes of the capacitors 
operation revealed that typical equivalent models of 
supercapacitors, containing one or two combined RC-
elements parameters and constructed on the basis of integer-
order equations, are not sufficient for accurate modelling of 
supercapacitors in dynamic working modes [4,5]. Therefore, 
complex equivalent supercapacitor models with many 
connected RC-elements or simpler models (Fig. 1b) 
described by fractional differential equations are used to 
solve this problem [4]. 

Fractional order calculus and dielectric relaxation 
models are often used to describe the impedance of 
supercapacitors [4,5]. The famous Debye model of ideal 
dielectric relaxation is practically replaced by its empirical 
modification, i.e. Havriliak-Negami model of complex 
dielectric constant 
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where:  ‒ “infinite frequency” dielectric constant, 

s ‒ “static frequency” dielectric constant, 

  ‒ angular frequency, 
T ‒ time dielectric constant. 

For  =1 equation (1) is converted into Cole-Cole 

equation 
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where 0 <   ≤ 1. 

For  =1 equation (1) is converted into Cole-Davison 
equation 
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where 0 <   ≤ 1. 

Fractional order calculus and a dielectric relaxation 
model which can be described by several of the above-
mentioned models are used to describe supercapacitor 
impedance [4]. However, Cole-Cole model is proposed for 
modelling in the field of automation, although its transfer 
function (TF) is still rather difficult to investigate. 

Another research highlights some practical applications 
of fractional order calculus in the field of supercapacitor 
modelling using fractional-order transfer functions based on 
Cole-Davidson model [5], which proves that they are more 
accurate than the previously applied integer RC-circuits, but 
are very complex for further research. 

Thus, it can be concluded that there is a need to simplify 
the results obtained to facilitate further application and 
research. 

When optimizing automatic control systems (ACS) for 
electromechanical systems (EMS) or MEMS with control 
objects described by high-order TFs, the researchers tend to 
often simplify such TFs and reduce the order of their 
numerator and denominator [6]. It was proven that 
representation of control objects using a simpler fractional 
order TF provides a reduction in the order of the output TF 
and can be effectively applied to approximate EMS and 
MEMS objects [7]. Thus, according to the developed 
approach, a new strategy for the approximation of high-order 
EMS and MEMS transfer functions with the use of simple 
fractional-order TF models without zeros was proposed [7]: 
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This approach was further extended and developed in [8], 
where the approximation of high-order TFs was carried out 
by using simple fractional order TF models with zero and 
pole 
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A high-order TF approximation with the use of 
sufficiently simple and compact fractional order TFs in a 
given frequency range provides better results than traditional 
approaches to lower the order through integer order TF.   

The purpose of this paper is to conduct further research 
for the development of a more comprehensive theory and to 
obtain new results in describing complex fractional order 
TFs of supercapacitor impedance or the voltage divider on its 
basis by applying simpler fractional order models, including 
the ones with zero and pole. In addition, these studies are 
relevant for the approximation of complex fractional order 
TFs obtained from the experimental identification of real 
supercapacitors by means of simpler fractional order TFs, as 
well as for the comparative analysis of such approximation 
accuracy in time and frequency domains. The results of the 
analysis offer an insight and some recommendations for 
further application of fractional order TFs under 
investigation to approximate complex fractional order TFs of 
the supercapacitor impedance or a divider on its basis by 
investigating their frequency and transition characteristics. 

The main tasks of this paper are as follows: 

- approximation of complex fractional order TF, which is 
the TF of a voltage divider created on the basis of a 
supercapacitor by using simpler fractional order models, and 
estimation of such approximation accuracy; 

- comparison of approximation accuracy estimation of all 
fractional order TFs, both in time and frequency domains, for 
final confirmation of accuracy results. 

II. SUPERCAPACITOR DESCRIPTION USING FRACTIONAL 

ORDER TF 

The formula for determining the real impedance of a 
supercapacitor can be written on the basis of one of the 
above equations (1) - (3) [4], as well as by means of using 
the parameters of the equivalent supercapacitor model, 
shown in Fig. 1b, where uR is parallel leakage resistance, 

аnd cR  is series equivalent resistance. Application of Cole-

Cole equation (2) to obtain the capacity 
)(С)j(C CC  0 has enabled to write the formula for 

determining the real impedance of the supercapacitor 
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The scheme consists of an operational amplifier, a R 
resistor and a supercapacitor of different capacities under 
investigation. In this scheme, a voltage divider is formed by 
a supercapacitor and active R resistor.  



 

Fig. 2. The scheme used in experiments with supercapacitors 

The TF of such voltage divider is generally described by 
the equation 
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Thus, there are two ways of obtaining simpler TFs of a 
voltage divider with a supercapacitor. 

Variant 1. It is possible to approximate TF of the 
supercapacitor (9) using a simpler fractional order TF (4), 
whose the parameters can be determined, for example, by 
the PSO method.  

…………………………………………………… 
 

Variant 2. Substitution of the obtained expression (9) 
for (10) resulting in the form (8) enables to obtain the final 
expression of the TF of the voltage divider based on the 
supercapacitor 
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III. PARTICLE SWARM OPTIMIZATION METHOD 

The peculiarity of the PSO method is N of particles 
moving in the D-dimensional search space, where each 
particle is characterized by random position and velocity 
parameters. Each particle changes its trajectory in space, 
depending on its own and group experience gained at each 
iteration. 

…………………………………………… 
 

IV. APPROXIMATION OF COMPLEX TF OF SUPERCAPACITOR 

USING SIMPLE FRACTIONAL ORDER TFS  

Approximation of high order part of voltage divider with 
supercapacitor with TF (13) has been carried out by means 
of using fractional order TFs (4) - (6), whose parameters 
have been found through PSO method.  

By applying MATLAB software environment, a 
necessary computer program has been developed to 
approximate high-order TFs using quite simple fractional 
order TFs (4) - (6), including the ones with zero and pole, on 
the basis of particle swarm optimization method with a 
minimal set error. This approach allows to look for the best 
options of parts approaching, particularly in EMS or MEMS 
in accordance with one-to- five unknown parameters [7,8]. 

…………………………………………… 

V. CONCLUSIONS 

1. The expression of the fractional order transfer 
function of the voltage divider built on the basis of a 
supercapacitor for its equivalent model which is used for 
experimental studies has been analytically obtained. Two 
ways of obtaining simpler transfer functions of a voltage 
divider with a supercapacitor have been considered. 

2. Complex fractional order transfer function of the 
voltage divider with a supercapacitor has been approximated 
by means of applying the proposed relatively simple 
fractional order transfer functions and particle swarm 
optimization method. 

3. It has been verified that this approach to 
approximating a complex fractional order transfer function 
of a voltage divider with a supercapacitor is much more 
advantageous from the point of view of describing the 
control objects that were obtained as a complex fractional 
order transfer function after object identification. 

4. According to the results of the comparative analysis, it 
has been proven that the application of all three proposed 
simple fractional order transfer functions resulted in a very 
high degree of coincidence of transition characteristics with 
an error of no more than 0.35%, and a high degree of 
coincidence in the low frequency range in the Bode 
diagrams. The best degree of coincidence in the Bode 
diagrams was demonstrated by the fractional order transfer 
function with zero and pole (6). 

5. The use of zero and pole fractional order transfer 
function (6) is recommended for the approximation of 
voltage divider with supercapacitor, since it provides higher 
frequency approximation accuracy than the other proposed 
fractional order transfer functions. 
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