

XI INTERNATIONAL SKOROBOHATKO MATHEMATICAL CONFERENCE

(October 26 30, 2020, Lviv, Ukraine)

ABSTRACTS

Lviv - 2020

Abstract

XI International V.Skorobohatko Mathematical Conference are published. The new results in a few branches of mathematics relevant to interests of Prof. Vitaliy Skorobohatko (1927-1996) are presented. Tasks in the fields of ordinary differential equations and differential equations with partial derivatives are considered, problems in function theory, functional analysis, algebra and computational mathematics are analyzed. A number of applications to problems in mathematical physics and mechanics are developed.

Editorial board:
M. Bokalo (editor-in-chief), Z. Nytrebych (editor-in-chief), V. Pelykh (editor-in-chief), M. Symotyuk (editor-in-chief), O. Petruk (executive editor), V. Beshley, P. Kalenyuk, Kh. Kuchmins'ka, M. Kutniv, A. Kuz, V. Petrychkovych, N. Protsakh

Approved for publication by the Academic Council of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences, Ukraine (prot. 7, 1.10.2020)

First page: portrait of V.Skorobohatko

Oksana Chmyr

Lviv State University of Life Safety o_chmyr@yahoo.com

THE FIRST BOUNDARY VALUE PROBLEM FOR EQUATION $\frac{\partial u}{\partial t}-\triangle u=|u|^{q} \varrho^{\gamma}(x)$ IN THE CLASS OF

 GENERALIZED FUNCTIONSLet $n \in \mathbb{N}, \Omega$ is a bounded domain in \mathbb{R}^{n} with closed frontier S of class $C^{\infty}, Q=\Omega \times(0, T], \Sigma=S \times(0, T], 0<T<+\infty$;

$$
\varrho(x, t)= \begin{cases}\varrho_{1}(x) & \text { at } d(x) \rightarrow 0 \\ \sqrt{\varrho_{2}(t)} & \text { at } t \rightarrow 0 \\ 1, & \text { inside of the domain } Q\end{cases}
$$

where $\varrho(x) \equiv \varrho_{1}(x), x \in \bar{\Omega}$, is a infinitely differentiable nonnegative function, which is a positive function on Ω, has the order of the distance $d(x)$ from the point x to S near S and $\varrho_{1}(x) \leq 1, x \in \bar{\Omega}$;
$\varrho_{2}(t), t \in(0, T]$, is a infinitely differentiable nonnegative function, which is a positive function at $t \in(0, T]$, has the order t when $t \rightarrow 0$ and $\varrho_{2}(t) \leq 1, t \in(0, T] ; 0 \leq \varrho(x, t) \leq 1,(x, t) \in \bar{Q}$.

Let $D(\bar{\Sigma})=C^{\infty}(\bar{\Sigma}), D(\bar{\Omega})=C^{\infty}(\bar{\Omega})$;
$D^{0}(\bar{\Sigma})=\left\{\varphi \in D(\bar{\Sigma}):\left.\frac{\partial^{m}}{\partial t^{m}} \varphi\right|_{t=T}=0, m=0,1, \ldots\right\}$,
$D_{0}(\bar{\Omega})=\left\{\varphi \in D(\bar{\Omega}):\left.\varphi\right|_{S}=0\right\}$.
The strokes will denote the spaces of linear continuous functionals on the respective functional spaces.

We introduce a functional space
$\mathcal{M}_{k}(Q)=\left\{\mathrm{v} \in L_{l o c}^{1}(Q):\|\mathrm{v}\|_{k}=\int_{Q} \varrho^{k}(x, t)|\mathrm{v}(x, t)| d x d t<+\infty\right\}, k \in \mathbb{R}$.
We study the problem

$$
\begin{gathered}
\frac{\partial u(x, t)}{\partial t}-\Delta u(x, t)=|u(x, t)|^{q} \varrho^{\gamma}(x),(x, t) \in Q, \\
\left.u\right|_{\Sigma}=F_{1}(x, t),(x, t) \in \Sigma,\left.\quad u\right|_{t=0}=F_{2}(x), x \in \Omega, \\
q \in(0,1), \gamma \in(-1 ; 0), F_{1} \in\left(D^{0}(\bar{\Sigma})\right)^{\prime}, F_{2} \in\left(D_{0}(\bar{\Omega})\right)^{\prime} .
\end{gathered}
$$

Using the Schauder's method, there was obtained the sufficient conditions for solvability of this problem in the space $\mathcal{M}_{k}(Q)$.

AUTHOR INDEX

Abramov A., 3
Ali M., 4
Andriychuk M., 5
Anop A., 6
Antonova T., 7
Assanova A., 8
Atlasiuk O., 9
Bak S., 10
Baksa V., 11
Bandura A., 11
Baranetskij Ya., 12
Baraniukova I., 107
Beshley V., 13
Bilanyk I., 14
Bilous A., 15
Bodnar D., 16
Bokalo M., 17
Bondarenko V., 18
Brodyak O., 44
Buhrii O., 19
Chattopadhyay S., 20
Chepurukhina I., 21
Cherevko I., 85
Chernega I., 22
Chmyr O., 23
Chopyuk Yu., 24

Dilnyi V., 25
Dmytryshyn M., 26
Dmytryshyn R., 7
Dobosevych O., 27
Dron V., 28
Dzhaliuk N., 29
Dzyubenko G., 30
Fedorchuk Vasyl, 31
Fedorchuk Volodymyr, 31, 32
Fenyk M., 33
Fratavchan T., 47
Frontczak R., 34
Gatalevych A., 35
Goriunov A., 36
Goy T., 34
Grover M., 37
Gun̈erhan H., 108
Guseva E., 38
Hachkevych O., 77
Haiduk V., 18
Halushchak S., 39
Hentosh O., 40
Hihliuk A., 41
Hladkyi V., 24
Hoyenko N., 42

