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Abstract 

The article proposed a general research scheme of heat transfer process in multilayer 

constructions for three basic geometric forms in order to simulate fire distribution. The scheme 

is based on linear differential equations, the Fourier method and the modified method of Eigen 

functions. The work considers five different layers’ design and does not take into account internal 

heat sources. In this regard, a one-parameter family of boundary problems were solved. The 

authors simulated heat transfer for the Cartesian, cylindrical and spherical coordinates. Structures 

comprised several materials each having thermal properties varying with temperature. 

Keywords: boundary problem, quasi-derivative, Cauchy matrix, Fourier method, eigen function 

method 

1. Introduction 

Multi-layer structures, in particular composite materials, are very spread because of 

additional advantage of combining physical, mechanical, thermal and diffusional properties of 

different materials. These materials are used in civil, automotive, shipbuilding, aerospace, 

biomedical, power, chemical, nuclear industries and microelectronics, including design and 

development of buildings, pipelines, heat exchangers, multilayer insulators, fluid reservoirs, 

pressure vessels, filters, composite membranes, automotive, ship and aerospace components, 

nuclear reactors, etc (Gay 2015, Kumar 2017). There are numerous papers based on two-
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dimensional thin-layer models and contain analytical and numerical estimates of thermoelastic 

equilibrium of bodies with layer coatings under the influence of distributed and local thermal and 

mechanical loading (Yasniy 2017; Yasniy 2013; Shevchuk 2013; Shevchuk 2017). Temperature 

stresses in bodies with surface inhomogeneities were investigated in papers by Beck (1984), 

Bulavin (1965), Giere (1965), Hagn (2012). Temperature effect on properties and destruction for 

energy equipment materials is studied by Kolesov (1992), and Malanchuk (2017). 

The subject of the proposed herein article is the heat transfer and diffusion in multilayer 

structures. This way, a proper understanding of the internal thermal processes in the laminate 

structures is of paramount importance for preventing their thermal destruction, for controlling 

directional heat transfer through them, for analysing of thermal stresses and deformation, etc.  

Therefore, it is important to have efficient procedures for heat flow and temperature 

distribution calculating inside multiple layers. An analytical method or numerical simulations are 

the most spread approaches to get the mentioned above procedures. 

Practically, precise analytical solutions (if they are available) may be very mathematically 

complicated, and this way numerical methods like FDM (Özişik 2017), FEM (Gosz 2017), or 

BEM (Aliabadi 2002) become increasingly popular because of modern numerical computation 

and continuous improvement of computer technologies. 

However, the analytical methods have some advantages compared to numerical ones: 

1) They offer more reliable results and are numerically more efficient; 

2) Precise analytical solutions give a deeper physical insight of the studied process than 

discrete numerical solutions, and show how the thermal behaviour of a multi-layer structure 

depends on parameters of layers; 

3) Precise analytical solutions can be used within verification and comparison of various 

numerical methods. 

These methods are well described in the classic books (Hahn 2012, Lykov 1967) and have 

been used by many researchers for stationary and non-stationary temperature fields in multi-layer 

non-uniform structures. They are the orthogonal and quasi-orthogonal expansion technique 

(Tittle 1965, Bulavin 1965), Green’s function approach (Siegel 1999, Haji-Sheikh 2002), Laplace 

transform method (Giere 1965, Lu 2013), Fourier transform method (Kayhani 2012), a finite 

integral transform (Singh 2011), a method of separation of variables and eigen function expansion 

(Norouzi 2016), for instance.  

The solution of heat transfer problem in multilayer structures was obtained for the Cartesian 

(Tittle 1965, Salt 1963, Mikhailov 2017, Beck 1984, Siegel 1999, de Monte 2002], cylindrical 

(Kayhani 2012, Norouzi 2016) and spherical coordinate system (Bulavin 1965, Salt 1963). From 

the viewpoint of partial differential equations, majority of the approaches are based on the 

variable separation or integral transformations. Their core is determination of eigenvalues of the 

corresponding boundary eigenvalue problem. However, this problem is not of traditional type 

because of discontinuous coefficients due to piecewise-homogeneous bodies. 

To solve the problem, researchers use an effective technique, which is based on the concept 

of quasi-derivatives, well known in the modern theory of ordinary differential systems. The 

researchers (Lu 2005, Li 2012) combined this technique with the method of variable separation 

to construct a mixed problem solution of a mixed problem for the heat equation with piecewise-

continuous coefficients depending on the spatial coordinate over a finite interval. The 

aforementioned approach has the advantages to avoid the original finding procedure, which is the 

most difficult stage of integral transformation methods (Lykov 1967).  

https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57197495913&zone=


R. T. Tatsiy et al.: Numerical Study on Heat Transfer in Multilayered Structures of Main Geometric… 38 

The obtained results can be used, for example, in heat transfer study for a multilayer plate 

and hollow cylinder under conditions of perfect thermal contact between layers.  

This idea has already been implemented in the works of Tatsiy (2011) and Semerak (2015). 

This way, there was the problem of this scheme unification for multilayer structures of any 

canonical form. 

There are many papers devoted to analytical methods of non-stationary temperature field 

calculation in layered non-uniform structures. In particular, the methods of the Laplace, Fourier 

and Green functions have been being applied up to now to the multilayer structures (Semerak 

2015, Arsenin 1974). Tikhonov (1997) proposed and substantiated a scheme of a mixed problem 

solution for heat equation with piecewise continuous coefficients depending on a finite interval 

spatial coordinate. The scheme was based on the reduction method, quasi-derivative concept, and 

modern theory of linear differential equation systems, Fourier method and modified method of 

eigen functions. 

2. Statement of the problem and its mathematical formulation 

A multilayer construction (in Cartesian, cylindrical or spherical coordinate systems) is 

considered. Its area is limited by surfaces 0r r . and nr r  , and is divided into n layers. 

Each layer is made of isotropic material and has its coefficient of thermal conductivity  , 

specific heat capacity с  and density  . Temperature initial distribution function  r  was 

specified depending on the coordinate r and time τ. There is a convective heat exchange with the 

environment on the outer surfaces, that is, the third kind boundary conditions are met.  

The general form of the thermal conductivity differential equations y in Cartesian, 

cylindrical, and spherical coordinate systems (equations (1), (2) and (3) respectively) are [1, 2]: 

    
 

 
 , ,t r t r

с r r r
r r

 
 



  
  

   
  (1) 

    
 

 
 , ,1t r t r

с r r r r
r r r

 
 



  
  

   
  (2) 

    
 

 
 2

2

, ,1t r t r
с r r r r

r rr

 
 



  
  

   
  (3) 

The only difference of these equations is the 
lr multiplier if l=0, l=1 and l=2. So, the 

equation (1) - (3) are combined into a one-parameter family of differential equations: 

    
 

 
 , ,1

, 0,1,2l

l

t r t r
c r r r r l

r rr

 
 



  
  

   
  (4) 

n particular, particular, if l = 0 is a multilayered flat construction; if l = 1 is multilayer hollow 

cylinder; if l = 2 is a multilayer hollow ball. 

The third kind boundary conditions for the equation (4) are: 
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  

  

0 0 0 0( , ) , ( ) ,

( , ) , ( ) ,n n n n

t
r t r

r

t
r t r

r

     

     


  


  

 

  (5) 

and initial condition:  

    ,0 .t r r   (6) 

Where  0   and  n   - the ambient temperature outside of the near-surface heat layers, 

and 0  and n  - heat transfer coefficients on the 0r r  and nr r .surfaces. 

The follow notations will be used: i  - the characteristic function of the semi-open interval 

 1,i ir r  , that is 
1

1

1, [ , )

0, [ , )

i i

i

i i

r r r

r r r







 


  

 
1

0

,
n

i i

i

r 




  
1

0

( ) ( ) ,
n

i i i

i

c r r c  




     
1

0

( ) ,
n

i i

i

r  




   , , 0 ,i i ic R     0, 1i n   , 

 [1] ,
df

l

rr t t r    – quasi derivative [8], 
 [1] ,

l

t r
q

r


  - heat flow density. 

The problem (4) - (6) solution is considered as the sum of two functions (the reduction method), 

according to Ropyak L. Ya., Shatskyi I. P., Makoviichuk M. V.: 

      , , ,t r u r v r      (7) 

Any function  ,u r   or  ,v r   can be chosen in a special way, so another one is determined 

unambiguously. 

3.  ,u r   function selection and the mixed task 

The function  ,u r   is defined as a solution (quasistationary) of the boundary value 

problem: 

  
1

0l

l
r u

r
     (8) 

 

  

  

0 0 0 0( , ) , ( ) ,

( , ) , ( ) ,n n n n

u
r u r

r

u
r u r

r

     

     


  


  

 

  (9) 

Where τ – parameter. 

The boundary conditions (9) can be rewritten as: 

 
   

   

[1]

0 0 0 0 0 0 0

[1]

, , ( ),

, , ( ),

l l

l l

n n n n n n n

r u r u r r

r u r u r r

     

     

  


 
  (10) 
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Where 
 [1] ,

df
lu r r u  

.
.   

Based on the (7) projection, the equation (4) is rewritten as: 

 
       , , , ,1 1l l

l l

u r v r u r v r
c c r r

r r r rr r

   
   

 

       
     

        
  (11) 

Assuming  ,u r   is the solution of the problems (8), (10), and considering

 ,1
0l

l

u r
r

r rr



 

 
  

 in the (11), we receive a non-uniform differential equation for the 

function  ,v r  : 

 
     , , ,1 l

l

v r v r u r
с r с

r rr

  
  

 

   
  

    
  (12) 

The function 
 ,u r

с









 at the right-hand side of the equation (12) is considered defined, 

that is the function  ,u r   is defined, too. The function  ,u r   is considered (8), (10) problem 

solution. As far as the function  ,u r   meets the boundary conditions (10), the projection (7) 

defines the boundary conditions for the function  ,v r  . 

 
   

   

[1]

0 0 0 0

[1]

, , 0,

, , 0,

l

l

n n n n

r v r v r

r v r v r

  

  

  


 

  (13) 

and the initial condition is the following: 

        ,0 ,0 .v r f r r u r     (14) 

Consequently, the function  ,v r   is the solution of the mixed problem (12) - (14), if only 

 ,u r   function is defined as the (8), (10) problem solution. 

4. The (8), (10) boundary problem solving 

The quasi-derivative concept [4, 8] is used for the problem (8), (10) solving. 

The vector  [1] ,
T

U u u  and the matrix 

1
0

.

0 0

lA r 

 
 
  
 

 are introduced. This way, the 

quaside-differential equation (8) is reduced to an equivalent system of 1-st order differential 

equations:  

 U AU R     (15) 

The boundary conditions (10) are presented in the vector form: 
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      0 ,nP U r Q U r        (16) 

Where P  and Q    square matrixes: 

 0 0
0 01

, ,
10 0

l

l

n n

r
P Q

r





   
    

  
  (17) 

And the vector    is     0 0 0 , .
T

l l

n n nr r       

The function   ,U r  which is absolutely continuous on the interval  0 , nr r , and fits the this 

system almost everywhere (the only exception is, perhaps, the function rupture points 

( ), ( ), ( )c r r r  ). 

The system (15) is: 

 

1
0

,

0 0

l
i ii i i

rU AU A 

 
   
 
 
 

  (18) 

for each interval. 

The Cauchy matrix [4-7] , ( , )i lB r s  of the system (18) is the follows: 

 
 ,

,

1 ,
( , ) , 0,1,2,

0 1

i l

i l

K r s
B r s l

 
  
 

  (19) 

where  

  ,

1
,

r

i l l

i s

dz
K r s

z
    (20) 

For arbitrary k i , it was designated 

 1, 1 2, 1 2 , 1( , ) ( , ) ( , ) ... ( , ),
df

l n m n l n n n l n n m l m mB r r B r r B r r B r r n m            (21) 

Assuming ( , ) ,l m mB r r E  where E  is a 2 2.  matrix. 

The structure (19) of the matrices  , ,i lB r s makes possible to establish the matrix structure 

(21), in particular: 

 
 

1

,1 ,
( , ) ,

0 1

n

i l

i ml n m

K r s
B r r n m





 
 

 
 
 
 


  (22) 

The work [4, 6] stated that the vector function ( )iU r  is the solution of problem (15) for each 

interval. 

 0 0( ) ( , ) ( , )i i i i iU r B r r B r r P       (23) 

where 
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0 0( ( , ))l nP P QB r r      (24) 

and the matrices are defined in (17) and the matrices P  and Q are defined in (17).  

It should be noted that the decision function ( )iu r  is the first coordinate of the vector-

function ( )iU r  (problem (8), (10)); and its quasi-derivative is the second coordinate 
[1] ( )iu r . The 

solution (23) of the problem (8), (10) exists and is unique when the condition 

 0det ( , ) 0l nP QB r r  is fulfilled. 

The expression (23) makes possible to define a solution over the entire interval  0 , nx x  using 

characteristic functions i  as: 

    
1

0

, , .
n

i i

i

u r u r  




   (25) 

5. Fourier method and task for eigenvalues 

We search non-trivial partial solutions of the homogeneous differential equation: 

 
   , ,1 l

l

v r v r
c r

r rr

 
 



  
  

   
  (26) 

which fulfils the boundary conditions (13), in the form [9]  

 ( , ) ( )v r e R r     (27) 

where   – parameter,  R r  – unknown function. 

The follow quasi-differential equation was obtained by substituting the right-hand side of 

(27) in (26): 

   0l lr R c r R       (28) 

with boundary conditions: 

 
[1]

0 0 0 0

[1]

( ) ( ) 0,

( ) ( ) 0.

l

l

n n n n

r R r R r

r R r R r





  


 
  (29) 

The problem (28), (29) is a classical eigenvalue problem for   parameter (eigenvalues) 

definition, which corresponds to nontrivial solutions (own functions)  ,k kR r  . Properties of 

eigenvalues k  and their own functions  ,k kR r   are exhaustively studied and described in 

detail, for example, in [9]. 
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6. Structural construction of own functions  

We introduce the following notation: 
 1

df
lR r R   – quasi-derivative, vector 

  1
,

T

R R R  and 

matrix 

1
0

0

l

l

A r

r c



 

 
 
   

. 

Then the quasi-differential equation (28) is reduced to the system of equivalent first order 

differential equations: 

 R AR    (30) 

The corresponding system on the interval  1,i ir r   is: 

 , 0, 1,i i iR A R i n      (31) 

Where iA  - the matrix 

1
0

0

l
i i

l

i i

rA

r c



 

 
 

  
  

. 

As it was mentioned above, absolutely continuous vector-function  ,R r   is the solution of 

the system (30), which corresponds to the conditions of the ideal thermal contact between the 

layers. 

The Cauchy matrix  , , ,i lB r s  of the system (31) is: 

 

                 

                 

,

1 0 0 1 0 0 0 0

2

1 1 1 1 1 0 0 1

( , , )

sin ( )
cos ( )

, 0

sin ( ) cos ( )

, , , , , , , ,

2 2

, , , , , , , ,

2 2

i l

i

i

i i

i i i i

i i i i i i i i i

i

i i i i i i i i i i

B r s

r s
r s

l

r s r s

s J s Y r J r Y s J s Y r J r Y s

rs J r Y s J s Y r r J r Y s J s Y r






 

   

         



         








  

 

  

 
 
 
 






        

                

, 1

cos sin sin

, 2

sin cos cos sin

i i i i

i i i

i i i i i i i i i i

i i

l

s r s r s r s

r rs

l

c rs r s s r r s r r s r s

s

   

  

         

 



    



        

 
 
 
 
 
 
 
 
   
  
  

 
 
 
  
  
  
  
    

  (32) 

Where i i

i

i

c 



 , 0J  and 0N –the Bessel and Neumann functions of zero order respectively. 

Similarly, as in formula (21): 
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 1 21 1 2 1( , , ) ( , , ) ( , , ) ... ( , , ) ,
df

k k ik i k k k k i iB r r B r r B r r B r r k i              (33) 

Let's also mark 

      
1

,0 0

0

, , , , , , ,
ndf

l i l li i i

i

B r r B r r B r r   




     (34) 

  
   

   
11 12

0

21 22

, , .
df

l n

b b
B r r

b b

 


 

 
 
 

  (35) 

The non-trivial solution  ,R r  of the system (30) is found as  

    0, , , ,lR r B r r C     (36) 

where  1 2,
T

C C C  a non-zero vector. 

Applying to both parts of equality (36) boundary conditions in the form (16) for   0,   it 

was obtained: 

        0 0 0 0, , , , , , 0,n l l nP R r Q R r P B r r Q B r r C             
  

or, assuming  0 0, , ,lB r r E   where E – unit matrix: 

  0, , 0l nP Q B r r C     
  (37) 

The necessary and sufficient conditions for a nonzero vector C in (37) are: 

  0det , , 0.l nP Q B r r     
  (38) 

We can define the form of the left (characteristic) equation (38), considering the 

formulas (17) and (35) 

  
   

   
11 120 0

0

21 22

0 01
det , , det 0

10 0

l

l n l

n n

b br
P Q B r r

r b b

 


  

     
            

      

  

So we got the result, which we will formulate in the form of 

Statement 1. The characteristic equation of the problem for eigenvalues (28), (29) has the 

form 

         0 0 12 22 11 21 0l l l

n n n nr r b b r b b            (39) 

As it is known [9], the roots of the characteristic equation k  (39) are positive and different. 

They are the eigenvalues of the problem (28), (29). 

To find a nonzero vector  1 2,
T

C C C we substitute k  in (37) instead of  . Then we 

come to vector equality: 
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11 12 10 0

21 22 2

0 1

11 21 12 22 2

0 0 ( ) ( ) 01
,

1 ( ) ( ) 00 0

1 0

( ( ) ( )) ( ( ) ( )) 0

l
k k

l

n n k k

l l

n n k k n n k k

b b Cr

r b b C

C

r b b r b b C

 

  



     

          
            

         

     
       

     

  

which is equivalent to the system of equations 

 
0 0 1 2

11 21 1 12 22 2

0,

( ( ) ( )) ( ( ) ( )) 0.

l

l l

n n k k n n k k

r C C

r b b C r b b C



     

  


     

  (40) 

As far as the system determinant is equal to zero, then system (40) has non-zero solutions 

1 20, 0C C   . Assuming, for instance 2 1,C   

 
0 0

1
, 1 .

T

l
C

r 

 
  
 

  (41) 

By denoting a non-trivial eigenvector corresponding to its Eigen value k , we obtain 

Statement 2. Eigenvector of the system of differential equations (30) with boundary 

conditions (16) for   0,   has the following structure 

       0 00

1

, , , , , , 0, 1

1

l
ki k il i k l i k

rR r B r r B r r i n  

 
 

    
 
 
 

  (42) 

Consequence. Eigen functions  ,k kR r  , as the first coordinates of eigenvectors  ,k kR r 

, can be written as: 

     0 00

1

, (1, 0) , , , 1,

1

l

k k l k
rR r B r r k 

 
 

    
 
 
 

  (43) 

In particular, since    
1

0

, , ,
n

k k ki k i

i

R r R r  




 it follows from (43) that 

       0 00

1

, (1;0) , , , , , 0, 1

1

l

ki k il i k l i k
rR r B r r B r r i n  

 
 

     
 
 
 

  (44) 

7. Development in the Fourier series by Eigen functions  ,k kR r   

Let’s assume 

 
1

0

( ) ( )
n

i i

i

g r g r




    (45) 
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Is a piecewise-absolutely continuous function, defined at the  0 , nr r  interval, specified by 

the different analytical expressions ( )ig r on each of the interval  1,i ir r  . In particular, the 

function  g r  is developed in the Fourier series by its Eigen functions  ,k kR r   of the problem 

(28), (29) [4]: 

 
1

( ) ( , )k k k

k

g r g R r 




   (46) 

where the Fourier coefficients kg  are calculated by the formulas 

 
11

2
0

1
( ) ( , )

|| ( , ) ||

i

i

rn
l

k i i i ki k

ik k r

g c r g r R r dr
R r

 






      (47) 

2

kR   Eigen function norm square  ,k kR r  , which is calculated by the formula 

 
11

2 2

0

|| ( , ) || ( , )
i

i

rn
l

k k i i ki k

i r

R r c r R r dr  




     (48) 

8. Development of a mixed problem (8), (9), (10) solution 

The Eigen function method [10] was used to solve the problem (12) - (14). It means the 

problem (12) - (14) is solved as  

      
1

, , ,k k k

k

v r T R r  




    (49) 

where  kT    unknown functions that we will define later. 

As far as 
u






 is included into the right-hand side of equation (12), we will develop it in the 

Fourier series by its Eigen functions (43) of the boundary problems (28) - (29), and the variable 

  is a parameter. 

Substituting (49) into (12) and after transformations we obtain an infinite set of equations  

       0, 1,2,3,....k k k kT T u k          (50) 

where  ku   – Fourier coefficients of development. 

    
1

,k k k

k

u
u R r 








 


   (51) 

The general solution of the differential equation (50) for each k  is:   

      
0

,kk s

k k kT t f e e u s ds


    

      (52) 

where kf  – Fourier coefficients of development. 
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    
1

( ) ( ,0) ,k k k

k

f r r u r f R r 




     (53) 

Finally we obtain the solution of the mixed problem (12) - (14) as the vector-function 

          
1

1 00

, , ,kk

n
s

kk k k i i

k i

V r f e e u s ds R r V r


     

 
 

 

 
     

 
    (54) 

where the first coordinate  ,v r  is the desired function, and the second one   [1] ,v r  is its quasi-

derivative. 

The solution of the mixed problem (12) - (14) is obtained in the form of a series: 

        
1 0

, ,kk s

i k k ki k

k

v r f e e u s ds R r


   


 



 
    

 
    (55) 

on each of the interval. 

Taking into account (25) and (55), we obtain the solution (7) of the problem (4) - (6) 

      
1

0

, , , ,
n

i i i

i

t x u x v x   




       (56) 

9. Numerical implementation of the method (model example) 

As a numerical example, we consider a construction that consists of five different layers. 

There is a convection heat exchange with the environment on its surfaces. It is necessary to 

determine the distribution of the non-stationary temperature field of the five-layer structure (for 

Cartesian, cylindrical and spherical coordinate systems), if, on the one hand, the temperature 

changes according to the law of the standard fire temperature regime (Buketov A V, Dolgov NA, 

Sapronov A A et al.). At the initial time, temperature is constant 020 C . The thermophysical 

characteristics of the materials and the laws of temperature change are given in Table 1. 
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Option Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Thickness, [m] 0.05 0.2 0.03 0.06 0.01 

Coefficient of thermal 

conductivity [W/m2 ·0С]  
0.76 1.92 0.09 0.7 0.96 

Specific heat [J/ kg0С]  840 840 840 840 880 

Density 1800 2500 300 1600 2000 

Temperature change laws  0 20   ,  
8

345lg 1 20
60

n


 

 
   

   

Coefficients of heat transfer 

on surfaces 0 25  , 4n   

Table 1. Initial data for problem solving 

We have obtained non-stationary temperature field problem solution for the five-layer 

construction for different coordinate systems by the proposed method. 

Cartesian coordinate system (five-layer flat wall) 

 

Fig. 1. Volume distribution: a - temperature field; b - heat flow density 
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time 

Coordinates of the layer, m 

en
v

ir
o

n
m

e

n
t 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

en
v

ir
o

n
m

e

n
t 

0 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

1 min 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 68.04 349.2 

3 min 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 133.8 502.2 

5 min 20.00 20.00 20.00 20.00 20.00 20.00 20.02 20.07 182 576.4 

30 min 20.00 20.00 20.00 20.00 20.00 20.33 25.32 64.05 454.9 841.8 

1 hour 20.00 20.00 20.00 20.18 21.15 27.48 54.95 139.6 589.5 945.3 

2 hours 20.00 20.10 20.37 29.12 37.53 66.71 132.6 255.5 722.7 1049 

6 hours 20.00 35.32 46.06 179.3 207.4 271.3 372.4 510.9 937.7 1213 

Table 2. Distribution of the temperature field of a five-layer flat structure, 0С 

time 

Coordinates of the layer, m 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

0 0 0 0 0 0 0 0 0 

1 min 0 0 0 0 0 0 0 7029 

3 min 0 0 0 0 0 0 0 9211 

5 min 0 0 0 0 0 1.7 16.48 9860 

30 min 0 0 0 0 41.6 496.5 3057 9673 

1 hour 0 0 1.6 90.8 490.5 1854 4978 8896 

2 hours 0.2 8.8 37.7 646.9 1700 3498 6039 8159 

6 hours 61.1 252 410.8 1754 3161 4605 6024 6898 

Table 3. Distribution of the density of the heat flow of a five-layer flat construction, W/m2 

 

 

 

Cylindrical coordinate system (five-layer hollow cylinder) 
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Fig. 2. Volume distribution: a - temperature field; b - heat flow density 

time 

Coordinates of the layer, m 

en
v

ir
o

n
m

en

t 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

en
v

ir
o

n
m

en

t 

0 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 

1 min 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 68.19 349.2 

3 min 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 134.6 502.2 

5 min 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.08 183.4 576.4 

30 min 20.00 20.00 20.00 20.00 20.00 20.39 26.15 67.96 462.3 841.8 

1 hour 20.00 20.00 20.00 20.48 21.64 29.5 61.03 151.9 601.6 945.3 

2 hours 20.00 20.13 20.58 33.48 44.44 80.04 154.4 283.8 741.4 1049 

6 hours 20.00 49.68 67.09 243.9 277.2 348.3 453.1 587.6 973.7 1213 

Table 4. Distribution of the temperature field of a five-layer cylindrical structure, 0С 
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time 
Coordinates of the layer, m 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

0 0 0 0 0 0 0 0 0 

1 min 0 0 0 0 0 0 0 7023 

3 min 0 0 0 0 0 0 0 9192 

5 min 0 0 0 0 0 0 19.65 9824 

30 min 0 0 0 0 50.3 560.1 3222 9487 

1 hour 0 0 2.51 119 590.4 2069 5193 8593 

2 hours 1.5 14.5 51.76 829.8 2001 3820 6170 7692 

6 hours 118.8 377.3 504.9 2040 3401 4623 5678 5996 

Table 5. Distribution of the temperature field of a five-layer cylindrical structure, 0С 

Spherical coordinate system (five-layer hollow sphere) 

 

Fig. 3. Volume distribution: a - temperature field; B - heat flow density 
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time 

Coordinates of the layer, m 

environme

nt  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

environme

nt 

0 20.00 20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.00 

1 

min 

20.00 20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

68.3

9 

349.2 

3 

min 

20.00 20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

135.

4 

502.2 

5 

min 

20.00 20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.0

6 

184.

8 

576.4 

30 

min 

20.00 20.0

0 

20.0

0 

20.0

0 

20.0

0 

20.5

1 

27.0

9 

72.0

9 

469.

7 

841.8 

1 

hour 

20.00 20.0

0 

20.1

8 

20.7

8 

22.1

7 

31.8

6 

67.8

3 

164.

8 

613.

7 

945.3 

2 

hour

s 

20.00 20.4

3 

21.1

5 

39.2

5 

53.3

6 

96 178.

8 

313.

7 

760.

1 

1049 

6 

hour

s 

20.00 73.7

7 

99.9

2 

320 358.

1 

433.

8 

538.

5 

665.

6 

100

8 

1213 

Table 6. Distribution of the temperature field of a five-layer hollow sphere, 0С 

time 

Coordinates of the layer, m 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

0 0 0 0 0 0 0 0 0 

1 min 0 0 0 0 0 0 0 7022 

3 min 0 0 0 0 0 0 0 9172 

5 min 0 0 0 0 0 0 18.61 9790 

30 min 0 0 0 0 61.35 628.5 3389 9301 

1 hour 0 1.2 3.01 154.7 704.3 2294 5399 8290 

2 hours 1.4 22.7 68.73 1041 2316 4124 6259 7226 

6 hours 214.8 526.2 584.4 2256 3509 4491 5229 5129 

Table 7. Distribution of heat density of a five-layer hollow ball, W/m2 

10. Conclusions 

This paper proposes a heat transfer scheme for multilayer constructions of various geometric 

forms. The authors obtained a non-stationary temperature field problem solution for the five-layer 

construction for different coordinate systems by the proposed method. The boundary conditions 

of the third kind are considered to make it clearer. The proposed scheme makes other boundary 

condition consideration easy. The work does not take into account internal heat sources to avoid 

calculation complications, which can divert attention from the main idea of the proposed 

approach. The method makes possible application of other external surface temperature changing 



Journal of the Serbian Society for Computational Mechanics / Vol. 13 / No. 2, 2019 

 
53 

relations. The presented examples use only the standard temperature mode of fire to show the 

proposed method application. The obtained analytical solution is modelled as a pseudocode and 

implemented on a specific numerical example. 
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