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General Scheme of Modeling
of Longitudinal Oscillations

in Horizontal Rods

Roman Tatsij , Oksana Karabyn(B) , Oksana Chmyr , Igor Malets ,
and Olga Smotr

Lviv State University of Life Safety, Lviv, Ukraine

Abstract. In this paper, we present the results of modeling nonstation-
ary oscillatory processes in rods consisting of an arbitrary number of
pieces. When modeling oscillatory processes that occur in many technical
objects (automotive shafts, rods) an important role is played by finding
the amplitude and frequency of oscillations. Solving oscillatory problems
is associated with various difficulties. Such difficulties are a consequence of
the application of methods of operation calculus and methods of approxi-
mate calculations. The method of modeling of oscillatory processes offered
in work is executed without application of operational methods and meth-
ods of approximate calculations. The method of oscillation process mod-
eling proposed in this paper is a universal method. The work is based on
the concept of quasi-derivatives. Applying the concept of quasi-derivatives
helps to avoid the problem of multiplication of generalized functions. Ana-
lytical formulas for describing oscillatory processes in rods consisting of an
arbitrary number of pieces are obtained. It can be applied in cases where
pieces of rods consist of different materials, and also when in places of
joints the masses are concentrated. The proposed method allows the use
of computational software. An example of constructing eigenvalues and
eigenfunctions for a rod consisting of two pieces is given.

Keywords: Kvazidifferential equation · The boundary value problem ·
The cauchy matrix · The eigenvalues problem · The method of fourier
and the method of eigenfunctions

1 Introduction

The problem of finding eigenvalues and eigenfunctions for equations in partial
derivatives of the second order is an urgent problem. The relevance is due to the
fact that such problems arise in the modeling of oscillatory processes of many tech-
nical systems. Each specific model is a separate mathematical problem, the ability
to solve which depends on the input conditions. The theory of oscillatory processes
is described in detail in [2,4,15,17]. In these works the mathematical and physi-
cal bases of oscillatory processes and methods of their modeling are stated. The
method of solving boundary value problems according to which the solution of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Babichev and V. Lytvynenko (Eds.): ISDMCI 2021, LNDECT 77, pp. 789–802, 2022.
https://doi.org/10.1007/978-3-030-82014-5_54
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problems is reduced to solving simpler problems is called the method of reduc-
tion. The solution of the general boundary value problem is sought in the form of
the sum of functions, one of which is the solution of a homogeneous problem, and
the other is an inhomogeneous problem with zero boundary conditions. One of the
most common methods for solving inhomogeneous problems is the method of sep-
arating variables, or the Fourier method. According to this method, the solution
of a homogeneous problem is sought in the form of the product of two functions
of one variable. Such a problem is called a problem of eigenvalues and eigenfunc-
tions. It is also called the task of Shturm Liouville [1,9,11]. The Fourier method
is an accurate method of solving these problems. In the process of solving prob-
lems by this method there are problems with the justification of the convergence
of series and the multiplication of generalized functions [6,10,19]. In some cases,
these problems can be avoided by reducing the system to a matrix form by intro-
ducing the so-called quasi-derivative [4,7,13]. In this paper, we used this method
to find solutions to four problems of oscillatory processes and demonstrated the
possibility of finding the required number of eigenvalues and eigenfunctions. This
method is new. It allows you to avoid multiplication of generalized functions. The
proposed method has an advantage over other methods in that it allows the use
of computational mathematical packages.

2 Problem Statement

Oscillation processes are modeled using hyperbolic type equations. Quite often, it
is almost impossible to obtain closed-loop solutions of such differential equations.
The method proposed in our work belongs to the direct methods of solving
boundary value problems, as a result of which the solutions are obtained in a
closed form. A feature of our work is the use of a quasi-derivative. This approach
will make it possible to write equations with partial derivatives of the second
order of the hyperbolic type with general boundary conditions to the matrix
form. The process of constructing the solution is based on the multiplication of
matrices. Consider a second-order differential equation in partial derivatives

m(x)
∂2u

∂t2
=

∂

∂x
(λ(x)

∂u

∂x
) (1)

where x ∈ (x0;xn), t ∈ (0;+∞)
Denote the product λ(x)∂u

∂x by u[1] and let’s call it quasi-derivative. Write
down the general boundary conditions:{

p11u(x0; t) + p12u
[1](x0; t) + q11u(xn; t) + q12u

[1](xn; t) = ψ0(t)
p21u(x0; t) + p22u

[1](x0; t) + q21u(xn; t) + q22u
[1](xn; t) = ψn(t)

(2)

The initial conditions are the following:{
u(x; 0) = Φ0(x)
∂u
∂t (x; 0) = Φ1(x)

(3)

where ψ0(t), ψn(t) ∈ C2(0;+∞), Φ0(x), Φ1(x) are piecewise continuous on
[x0;xn]
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3 Literature Review

As defined in the introduction, the problem of finding eigenvalues and eigenfunc-
tions of a level in private derivatives of other hyperbolic conditions is an urgent
problem in modeling quantitative processes of different technical systems. In the
article [8] the case of rod oscillations under the action of periodic force is con-
sidered. What is special is that the action of force is distributed along the rod
at a certain speed. Finding eigenvalues and eigenfunctions is a key task for solv-
ing the equation with second-order partial derivatives. The work [7] is devoted
to finding a class of self-adjoint regular eigenfunctions and eigenvalues for each
natural n. The boundary value problem problem for the hyperbolic equation in
the rectangular domain is considered in [12]. A feature of this work is the case
of singular coefficients of the equation. A very important aspect is the proof of
the existence and uniqueness of the solution (Cauchy problem) and the proof of
the stability theorem of the solution. The solution is obtained in the form of a
Fourier-Bessel series. In the article [16] the matrix approach to the decision of
a problem on eigenvalues and eigenfunctions (Sturm-Liouville problem) of the
equation of hyperbolic type is offered. Emphasis is placed on the fact that the
type of solution depends on the structure of the matrices. The matrix approach
to the problem presentation is very convenient for the use of computational soft-
ware. In our case the method of matrix calculus and the presentation of the
differential equation in partial derivatives and the most general boundary condi-
tions in matrix form are also used. In [3] a two-step method of discretization of a
combined hyperbolic-parabolic problem with a nonlocal boundary condition was
proposed. Examples of solving such problems by numerical methods are given.
The problem of stability of solutions of the second-order problem considered in
the work [18]. The method of introducing a quasi-derivative and reducing the
equation of thermal conductivity to the matrix form is used in the work [13].
However, despite the achievements in this subject area, the problem of series
convergence, multiplication of generalized functions and obtaining solutions of
equations in partial derivatives remains open. The solution to this problem can
be achieved to some extent through the use of modern calculation technolo-
gies using software tools [5]. The authors proposed to use the matrix form of
the second-order differential equation and modern methods of calculations using
mathematical software to model the oscillatory processes in the works [14]. The
objective of the research is to find solutions of the equation of rod oscillations
with different load and conditions using the concept of a quasi-derivative.

4 The General Scheme of Search of the Solution

The general scheme of finding a solution is to build two functions w(x, t) and
v(x, t) such as

u(x, t) = w(x, t) + v(x, t)
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Let’s find the function w(x, t) by a constructive method, then the function v(x, t)
will be defined unambiguously. The function w(x, t) is a solution of a boundary
value problem

(λ(x)wx
′)′

x = −f(x) (4)

with the boundary conditions (2). We reduce this problem to a matrix form

W ′
x = A(x) · W + F (5)

P · W (x0, t) + Q · W (xn, t) = Γ (t) (6)

Where

A(x) =
(

0 1
λ(x)

0 0

)
,W =

(
w

w[1]

)
, F =

(
0

−f(x)

)
,

P =
(

p11 p12
p21 p22

)
, Q =

(
q11 q12
q21 q22

)
, Γ (t) =

(
ψ0(t)
ψ1(t)

)

Let x0 < x1 < x2 <···< xj−1 < xj < xj+1 <···< xn−1 < xn are the arbitrary
partition of the segment [x0;xn] of the real axis Ox into n parts. The solution
of the problem at each interval [xi;xi+1) is the following:

W i(x, t) = Bi(x, xi) · P i +
∫ x

xi

Bi(x, xs) · P i(s)ds

where Bi(x, s) =
(

1 bi(x, s)
0 1

)
is the Cauchy matrix of a system, bi(x, s) =∫ x

s
1

λi(z)
dz Let’s build matrices (for an arbitrary k � i)

B(xk, xi) =
(

1
∑k−1

m=i bm(xm+1, xm)
0 1

)

We use the recurrent method of mathematical induction to construct vectors Pi

Pi = B(xi, x0) · P0 +
i∑

k=0

B(xi, xk)Zk,

where Zk =
∫ xk

xk−1
Bk−1(xk, s) · F k−1(s)ds. The vector P 0 determines from the

initial conditions by the formula:

P 0 = [P + Q · B(xn, x0)]−1 · (Γ − Q
n∑

k=1

B(xn, xk)Zk)

The first coordinate of the vector Wi(x, t) is indeed the searched function wi(x, t).
Thus function w(x, t) is a sum w(x, t) =

∑n−1
i=0 wi(x, t)θi, θi is the characteristic

function of the interval [xi;xi+1), that is θi(x) =
{

1, x ∈ [xi, xi+1),
0, x /∈ [xi, xi+1),

i = 0, n − 1.

The function v(x, t) is the solution of a mixed problem

m(x)
∂2v

∂t2
− ∂

∂x
(λ(x)

∂v

∂x
) = −m(x)

∂2w

∂t2
(7)
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Initial conditions for the function v(x, t) are the following:
{

v(x, 0) = Φ0(x),
∂v
∂t (x, 0) = Φ1(x),

(8)

where
Φ0

def
= φ0(x) − w(x, 0)

Φ1
def
= φ1(x) − ∂w

∂t
(x, 0).

The boundary conditions for the function v(x, t) will be the following:
{

p11v(x0) + p12v
[1](x0) = 0

q21v(xn) + q22v
[1](xn) = 0

(9)

We build the function v(x, t) in the form of a product

v(x, t) = T (t) · X(x)

Solve the problem of eigenvalues and eigenfunctions

(λ(x)X ′(x))′ + ω2m(x)X(x) = 0 (10)
{

X(x0) = 0
X(xn) = 0 (11)

Let’s transform the problem into a matrix form. For this purposes let’s denote

X[1]
def
= λX ′,X =

(
X

X [1]

)
, A =

(
0 1

λ(x)

−m(x)ω2 0

)
.

Cauchy matrix

B̃(xn, x0, ω)
def
=

(b11(ω) b12(ω)
b21(ω) b22(ω)

)
.

With this designations, the problem (10), (11) takes the form:

X ′ = A · X (12)

P · X(x0) + Q · X(xn) = 0. (13)

We solve the problem in each segment [xi;xi+1). The eigenfunctions Xk(x, ωk)
as the first coordinates of the eigenvectors Xk(x, ωk) can be written down as

Xk(x, ωk) =
(
1 0

) · B̃(x, x0, ωk) · C (14)

In order to exist vector C, there must be such condition

det(P + Q · B̃(xn, x0, ω)) = 0 (15)
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The Eq. (14) is a characteristic equation of the problem (10), (11) or (12), (13).
We will look for the function v(x, t) by arranging it in a series by orthogonal
functions Xk(x, ωk), which are the solutions of the set of equations

v(x, t) =
n∑

k=1

Tk(t) · Xk(x, ωk), (16)

where Tk(t) are the solutions of a set of equations

T ′′
k (t) + ω2

k · Tk(t) = −wk(t).

Thus, finally a solution of the mixed problem (7)–(8) is received in a form of the
series

v(x, t) =
∞∑

k=1

[
Φ0k cos ωkt +

Φ1k

ωk
sin ωkt − 1

ωk

∫ t

0

sin ωk(t − s) · wk(s)ds

]
· Xk(x, ωk).

(17)
For some function types consider how the method description works.

5 A Case of Piecewise Continuous Functions with
Concentrated Masses

Let in (1) define m(x) and λ(x) - are piecewise continuous functions

m(x) =
n−1∑
i=0

mi(x)θi, mi(x) > 0,

λ(x) =
n−1∑
i=0

λi(x)θi, λi(x) ∈ C[xi, xi+1), λi(x) > 0,

f(x) =
n−1∑
i=0

gi(x)θi +
n−1∑
j=0

sjδj(x − xj), gi ∈ C[xi, xi+1), sj ∈ R,

P =
(

1 0
0 0

)
, Q =

(
0 0
1 0

)
.

By using the described method, we can avoid multiplication of generalized func-
tions that are embedded in the function f(x). Let’s denote

σn =
n−1∑
m=0

bm(xm+1, xm), Ik−1(xk) = −
∫ xk

xk−1

bk−1(xk, s)gk−1(s)ds,

I
[1]
k−1(xk) = −

∫ xk

xk−1

gk−1(s)ds.
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With such designations

wi(x, t) = ψ0(t) + (bi(x, xi) + σi) · ψn(t) − ψ0(t)
σn

− 1
σn

(bi(x, xi) + σi) ·
n∑

k=0

(Ik−1(xk) + (I [1]k−1(xk) − sk) ·
n−1∑
m=k

bm(xm+1, xm)

+
i∑

k=0

(Ik−1(xk) + (I [1]k−1(xk) − sk)
i−1∑
m=k

bm(xm+1, xm))

+bi(x, xi)
i∑

k=0

(I [1])k−1(xk) − sk)) + Ii(x)

Vector C in (14) is
(

0
1

)
. The characteristic equation of function v(x, t) takes

the form b12(ω) = 0 and function v(x, t) takes the form (17).

6 A Case of Piecewise Constant Functions with
Concentrated Masses

Let in (1) m(x), f(x) – are piecewise constant with concentrated masses, λ(x)
– is piecewise constant:

m(x) =
n−1∑
i=0

miθi(x) +
n−1∑
i=0

Miδ(x − xi),

f(x) =
n−1∑
i=0

giθi(x) +
n−1∑
i=0

Siδ(x − xi),

and λ(x) – are piecewise constant functions λ(x) =
n−1∑
i=0

λiθi(x). In boundary

conditions (2)

P =
(

1 0
0 0

)
, Q =

(
0 0
1 0

)
.

In this case it is possible to specify the function wi(x, t)

wi(x, t) = ψ0(t) +

(
x − xi

λi
+

i−1∑
m=0

�xm+1

λm

)
· ψn(t) − ψ0(t)

n−1∑
m=0

�xm+1
λm

− 1
n−1∑
m=0

�xm+1
λm

·
(

x − xi

λi
+

i−1∑
m=0

�xm+1

λm

)
·
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·
(

n∑
k=1

gk−1 � x2
k

2λk−1
− (gk−1 � xk + sk)

n−1∑
m=k

�xm−1

λm

)

+
i∑

k=1

(
gk−1 � x2

k

2λk−1
− (gk−1 � xk + sk)

i−1∑
m=k

�xm−1

λm

)

−x − xi

λi

i∑
k=1

(gk−1 � xk + sk) +
gi(x − xi)2

2λi

To build a function v(x, t) we use the method of expansion by the eigenfunc-
tions. Due to the delta functions in the left and right part of the equation, we
go to the system

X
′
=

(
n−1∑
k=0

Akθk +
n−1∑
k=0

Ckδ(x − xk)

)
· X,

where Ak =
(

0 1
λk−mkωk 0

)
, Ck =

(
0 0

−Mω2 0

)
with boundary conditions

PX(x0) + QX(xn) = 0. Cauchy matrix has the following structure

B̃(x, x0, ω)
def
=

n−1∑
i=0

B̃i(x, xi, ω) · B̃(xi, x0, ω) · θi,

where B̃(xi, x0, ω)
def
=

i∏
j=0

C̃j · B̃i−j(xi−j+1, xi−j , ω), C̃i = (E + Ci), i = 1, n − 1,

B̃(xi, xi, ω)
def
= E,

B̃i(x, s, ω) =
(

cos αi(x − s) sinαi(x−s)
λiαi−λiαi sin αi(x − s) cos αi(x − s)

)
, αi = ω

√
mi

λi
.

Vector C in (14) is
(

0
1

)
.

The characteristic equation of function v(x, t) takes the form b12(ω) = 0. The
function v(x, t) is the same as in (17).

7 A Case of Piecewise Constant Functions

Let in (1) m(x), f(x), λ(x) – are piecewise constant functions:

m(x) =
n−1∑
i=0

miθi(x), f(x) =
n−1∑
i=0

fiθi(x), λ(x) =
n−1∑
i=0

λiθi(x).

Let’s consider boundary conditions (6) with matrix P =
(

1 1
0 0

)
, Q =

(
0 0
1 1

)
.

Under these conditions, the Cauchy matrix components bi(x, s) = x−s
λi

.
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Let’s denote

σn = q12

n−1∑
m=0

bm(xm+1, xm) + q22,

Ik−1(xk) = −
xk∫

xk−1

bk−1(xk, s)fk−1 ds,

I
[1]
k−1(xk) = −

xk∫
xk−1

fk−1 ds.

The function v(x, t) is the following

v(x, t) =
1

p11σn − q21p12
· (ψ0(t)σn − p12ψn(t) − ψ0(t)q21 · (bi(x, xi)

+
i−1∑
m=0

bm(xm+1, xm))) +
p12

p11σn − q21p12
· (ψn(t) − q21(

n∑
k=0

Ik−1(xk)

+I
[1]
k−1(xk) ·

n−1∑
m=k

bm(xm+1, xm)) − q22

n∑
k=0

I
[k]
k−1(xk))·

(1 + bi(x, xi) +
i−1∑
m=0

bm(xm+1, xm))

In this case the characteristic equation of the problem to eigenvalues is

b12(ω) + b22(ω) − b11(ω) − b21(ω) = 0.

Vector C in (14) is
(−1

1

)
. The function v(x, t) is the same as in (17).

By specifying the number of partition segments, material parameters, and
core dimensions, we can obtain an analytical expression of the required number
of eigenvalues and eigenfunctions. We do all the calculations in Maple package.

8 An Example of a Numerical Implementation of the
Method for a Rod of Two Pieces

Modern software allows you to get the required number of eigenvalues and
eigenfunctions, which ensures the appropriate accuracy of the solution. Con-
sider the result of using the Maple package to obtain a solution to the prob-
lem. For example, consider a steel rod 1 m long, consisting of two cylindrical
pieces of equal length cross-sectional area, respectively, are F0 = 0, 0025πm2,
F1 = 0, 000625πm2, x0 = 0, x1 = 0, 5, x2 = 1. The Young’s modulus for steel is
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E = 20394324259 kg/m2, density is ρ = 7900 kg/m3. Consider the equation of
longitudinal oscillations of the rod

ρ

E
· F (x)

∂2u

∂t2
=

∂

∂x

(
F (x)

∂u

∂x

)

with boundary conditions {
u(x0, t) = 1,
u(x2, t) = 1

and initial conditions {
u(x, 0) = ϕ0(x),
∂u
∂t (x, 0) = ϕ1(x).

Calculations are performed in the Maple package (Figs. 1, 2, 3, 4 and 5).

Fig. 1. Finding the first eleven eigenvalues

Fig. 2. Finding the first eleven eigenfunctions Xk,0
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Fig. 3. Finding the first eleven eigenfunctions Xk,1

Fig. 4. Finding the first eleven eigenfunctions Xk,0
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Fig. 5. Finding the first eleven eigenfunctions Xk,1

9 Conclusions

In the work on the basis of the created new method of solving nonstationary prob-
lems for equations of hyperbolic type, the solution of the actual scientific and tech-
nical problem by methods of mathematical modeling of wave processes is given.
The method of solving equations in partial derivatives of the second order of the
hyperbolic type described in the work makes it possible to model oscillating pro-
cesses in horizontal rods consisting of an arbitrary number of pieces and having
different cross sections. The proposed direct method can be used in the study
of oscillatory processes without the use of approximate and operational calcu-
lus methods. The solutions of the hyperbolic equation with piecewise continu-
ous coefficients on the spatial variable and right-hand sides with the most general
local boundary conditions are obtained. The partial case, piecewise-constant coef-
ficients and right-hand sides are singled out, when the solutions of the initial prob-
lem can be obtained in a closed form. Using the reduction method, the solutions
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of the general first boundary value problem for the equation of hyperbolic type
with piecewise continuous coefficients and stationary inhomogeneity are obtained.
The general first boundary value problem for the equation of hyperbolic type with
piecewise - constant coefficients and - features is investigated. By specifying the
number of partition segments, material parameters, and core dimensions, we can
obtain an analytical expression of the required number of eigenvalues and eigen-
functions. We do all the calculations in Maple package. The possibilities of appli-
cation of the proposed method are much wider than this work and, in particular,
can be used in further research.
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