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Abstract. The strength of a thin-walled cylindrical large-capacity tank was evaluated. The 

walls of the tank and the bottom are simultaneously exposed to hydrostatic pressure of the 

liquid and additionally gas pressure-loaded. The stress at the bottom of the tank was 

determined taking into account the boundary forces under the combined action of hydraulic 

and gas pressures. The dependences for determining the boundary forces were obtained by 

solving the equation of deformations compatibility of a thin-walled cylindrical shell and a 

round plate resting on a solid surface. The influence of gas pressure increase on the magnitude 

of stresses was investigated. 

1. Introduction and literature review 

Large-capacity cylindrical tanks are widely used in the industry for storage of liquids: petroleum, oil, 

chemicals, etc. Vertically placed steel cylindrical tanks are welded thin-walled structures with a flat 

round bottom. The walls and bottom of the liquid-filled tanks are exposed to hydrostatic pressure. 

External action of wind load on the tank wall can lead to buckling collapse if the tank is partially filled 

with liquid. In case of a shortcoming of valve devices or their failure, an additional gas pressure 

appears in tanks. The presence of microcracks and other material defects on the inner surfaces of the 

tanks contributes to the concentration of stresses and reduces the strength of the structure. Therefore, 

the action of various factors can lead to damaging the tanks filled with liquid. Leakage of liquid from 

the tank is potentially dangerous to the environment due to pollution, fire or explosion hazard [1]. This 

causes significant financial losses and the emergence of dangerous situations for humans and the 

environment. 

2. Problem formulation 

Today, vertical cylindrical tanks are the most convenient and rather cost-effective device for storing 

liquids: petroleum, oil, chemicals, etc. Vertical cylindrical tanks with low pressure are designed under 

the assumption that the excess pressure inside the tank is almost equal to atmospheric pressure  

( 93.3p   kPa) [1]. Therefore, the tank wall will only be exposed to the hydrostatic pressure of the 

liquid. However, in case of deficiency of valve devices or their failure the gas pressure occurs in the 

tanks, the value of which exceeds the value of atmospheric pressure. Thus, failing to take into account 

the action of additional pressure on the cylindrical tank walls adversely affects its operational 

reliability.  

In [2] it is noted that 7% of emergencies that occur during the use of tanks are the result of 

structural defects, and 50% are caused by defects during installation and manufacture of tank 

structures. Vertical steel tank designs involve a weak weld, connecting the stationary roof to the tank 

walls. This weld protects the tank from the destruction of its walls when the internal pressure is 

increased due to the destruction of the roof. In addition, the work [2] emphasized that the world 



APEM 2021
IOP Conf. Series: Materials Science and Engineering 1164  (2021) 012045

IOP Publishing
doi:10.1088/1757-899X/1164/1/012045

2

practice showed low efficiency of such protection against tank destruction. There were often cases 

when the roof of the tank did not come off, but the bottom of the tank teared off and the whole 

cylindrical structure rose into the air. 

According to [3], uneven subsidence of the tank structure over the area and along the bottom 

perimeter cause additional deformations in the elements of the structure, especially in the lower 

junction of the wall with the edge of the bottom, which causes additional stresses. The combination of 

working stresses with stresses from uneven subsidence of the bottom can lead to the destruction of the 

wall-bottom joint.  

Therefore, given the relevance of the issue of the tanks’ strength in general and to avoid the 

destruction of the junction of the wall with it, this junction must be calculated taking into account the 

edge effect. 

3. Analysis of publications 

The strength of cylindrical, conical and spherical tanks and the influence of various factors on their 

strength were considered in many works, since today the problems of strength remain relevant. The 

study [4] covers a number of important issues related to the strength of tanks, taking into account the 

design features and plastic deformation of the material. The influence of weld joint defects on the 

strength of tanks was studied using the finite element method in the publication [5]. Stresses in 

cylindrical vessels under pressure are considered in the publication [6]. In this study, both the 

theoretical research of the main stresses in the wall of the cylindrical tank and the experimental study 

of these stresses were conducted. In general, the issue of the strength of tanks with different shapes, 

the design models of which are cylindrical, spherical and conical shells, is covered in the works [7-

10]. The influence on the strength of the tank walls by the existing stress concentrators was 

investigated in study [11] using the finite elements method. According to [3], the most common tank 

accidents are brittle fractures. As an example, this paper shows the origin of a crack at the tank’s wall-

bottom joint, made of low-alloy steel of 09G2S-15 mark. A significant number of published works 

testify to the relevance of assessing the strength of tanks for various purposes, taking into account their 

stress. 

4. Aim of Paper 

The purpose of the work is to study the combined effect of hydraulic and gas pressure on the strength 

of a steel cylindrical thin-walled tank in the places of walls-bottom joint, taking into account the 

boundary. The object of the study is the change of stresses in the wall of a cylindrical steel tank, 

arising from the combined action of hydraulic and gas pressure, taking into account the boundary 

forces. The subject of the study is a large-capacity cylindrical steel tank, the bottom of which rests on 

a well-compacted sand cushion. 

5. Materials and methods  

Materials of structures of large-capacity cylindrical tanks are low-alloy steels for engineering 

structures of the C255, C275, C285 brands, in the form of sheet or broadband rolled metal [1]. C255 

steel analogues in the European Union are S275JR, S275J0 and S275J2 steels. The mechanical 

characteristics of C255 steel with a sheet thickness of 10-20 mm are as follows: yield strength is 245 

MPa, temporary resistance limit is 370 MPa. 

The design model of a large-capacity tank is a thin-walled cylindrical shell with a medium radius 

R  and wall thickness 1 , the bottom of which is in the form of a round plate 2  thick resting on a 

compacted sand cushion (Figure 1). The tank is under the action of hydrostatic pressure q  of the 

liquid with a density   that fills the tank to a height H  and is additionally loaded with gas pressure 

p . In the case of such a load on the cylindrical shell, the dangerous cross-sections in which the 

greatest stresses occur are located near the joints between the wall and the bottom. 
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Figure 1. The design model of the cylindrical tank. 

The internal forces (Figure 2) in the wall of the cylindrical tank near the wall-bottom joint in 

accordance with [12] are the circular force ( )T x , meridian ( )M x  and circular ( )K x  bending 

moments: 
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 (1) 

where k  – attenuation coefficient,   – the density of the liquid the tank is filled with, 0P  – boundary 

force, 0M  – edge moment. 

 

Figure 2. Internal forces in the wall of the cylindrical tank. 

According to [12], the attenuation coefficient is calculated by the formula 

 24

1

3 1
k

R

 



, 

 

where   – Poisson's ratio of the tank material. 

The directions of the boundary forces in the wall of the cylindrical tank and its bottom are shown in 

Figure 3. 
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Figure 3. Boundary forces in the wall of the cylindrical tank and on the round bottom. 

Research results To determine the boundary forces, let us write the equation of deformations 

compatibility of the tank wall with the bottom: 

 

1 2

1 2

;

,

  


    

(2) 

 

where 1 , 1  – radial displacement and rotation angle of the lower edge of the wall of the cylindrical 

tank; 2 , 2  – radial displacement and rotation angle of the bottom. 

Since we consider the walls of a cylindrical tank to be loaded with hydraulic q  and gas pressure p  

(Figure 1), the expressions for radial displacements and rotation angles, taking into account the 

boundary force 0P  and the edge moment 0M  of the lower edge of the tank’s wall and the bottom, are 

presented as follows  
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(4) 

where q , p , 0P
 , 0M

  – radial displacements caused, respectively, by hydrostatic pressure q, gas 

pressure p , boundary force 0P  and edge moment 0M . Angles of rotation   are denoted by similar 

indices. 

The values of radial   and angular deformations   included in expressions (3) for a cylindrical 

tank with a medium radius R , wall thickness 1  made of a material with modulus of elasticity E  and 

Poisson's ratio  , filled with a liquid with density   up to height H  and additionally loaded with gas 

pressure p  are as follows [12]:  

0 0

0 0

2 2 2 2
2

1 1 1 0 1 0

1 1 1 1

2 2 2 3 2

1 1 1 0 1 0

1 1 1

2 2 2
; ; ; ;

2

2 4
0; ; ; .

P Mp q

P Mp q

R kR k R
pR H P M

E E E E

R k R k R
P M

E E E

  
           

   


         

  

 (5) 



APEM 2021
IOP Conf. Series: Materials Science and Engineering 1164  (2021) 012045

IOP Publishing
doi:10.1088/1757-899X/1164/1/012045

5

The bottom of the tank, which lies on a solid base, is a round plate with a thickness 2  and radius 

R  (Figure 3). The ratio of the plate’s radius to its thickness – 2/R   is a large value. According to 

[12], the radial displacements and rotation angles of the round plate are the following: 
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2 2 2 2 2 2 2 2

2

1
0; 0; .
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In view of (3) – (6) in (2) we have: 
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After the conversion, let us write the system of equations (7) as follows 

21
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From the system of equations (8) let us determine the unknown boundary force 0P  and edge 

moment 0M :  
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After taking into account expressions (9) for 0M  and 0P  in (1) we will obtain expressions for 

determining the internal forces: circular force ( )T x , meridian ( )M x  and circular ( )K x  bending 

moments: 
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(10) 
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Taking into account (10) for internal forces, we will calculate normal stresses M  and T  in the 

wall of the cylindrical tank, arising from the action of boundary forces, by the formula: 
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According to [4, 12], the forces and stresses associated with the edge effect at a distance /x k

constitute only a few percent of their values at the edge of the shell, so it is not reasonable to take them 

into account at a further distance.  

The influence of boundary forces and additional gas pressure on the magnitude of stresses will be 

considered based on the example of a steel ( 0.3)   thin-walled tank with dimensions  

7.5R   m, 9H   m, 
2

1 1 10     m filled with liquid (oil) with a density of 760   kg / m3. The 

curves of changes in stresses M  and T  obtained by formulas (11) taking into account (10) are 

shown in Figure 4. Curves 1 in Figure 4 show the change of stresses in the tank wall under additional 

exposure to gas pressure 93.3p   kPa, curves 2 – pressure 186.6p   kPa. Under the combined effect 

of gas and hydraulic pressure the stress M  acquires the largest value in the wall of the tank near the 

joint with the bottom: when 0x  , then 126M   MPa with gas pressure 93.3p   kPa, (Figure 4, a, 

curve 1). Double increase of the additional gas pressure (Figure 4, a, curve 2) also causes a double 

increase in stress M  from the boundary forces.  

 

Figure 4. Graphs of changes in stresses from boundary forces in the wall of a cylindrical tank. 
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The stress T  in the tank wall near the joint with the bottom, when 0x  , is equal to  

50T   MPa at additional gas pressure 93.3p   kPa, (curve 1). When the pressure doubles, they are 

increased almost twice as well. (Figure 4, b, curve 2). These stresses reach the greatest value at a 

distance of 5.0x  m from the flat bottom of the tank. In a cylindrical tank with a spherical bottom 

[12], the largest circular stresses occur at a distance
11.447x R  . With the specified sizes of the 

tank in case of a spherical bottom the value x  constitutes 0.396  m. 

According to the momentless theory of shell strength, provided that the cylindrical tank is exposed 

only to hydrostatic pressure of the liquid, the values of the membrane stresses in the wall are much 

smaller. Membrane stresses are equal to: meridian – 38m   MPa, circular – 76   MPa. The 

meridian membrane stress at a given tank load is 3.6 times less than the stress 126M   MPa 

calculated taking into account the boundary forces at the tank wall-bottom joint. 

Conclusions  

The strength of a thin-walled cylindrical tank was evaluated under the combined action of the 

hydrostatic pressure of the liquid and the additional gas pressure. To determine the stresses in the 

dangerous intersection near the flat bottom of the tank, the presence of boundary forces is taken into 

account. The dependences for determining the boundary forces were obtained by solving the equation 

of deformations compatibility of a thin-walled cylindrical shell and a round plate resting on a solid 

surface.  
It was found that the meridian stresses in the tank wall at the junction with the round bottom plate 

are 3.6 times greater than the values of such stresses, determined by the momentless theory of shells. 

Therefore, taking into account additional gas pressure and boundary forces to calculate the strength of 

a cylindrical tank with a flat bottom increases the values of stresses and changes the correlations 

between them. Such factors of impact on the strength must be taken into account both during the 

design and during the use of the tanks.  
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