Please use this identifier to cite or link to this item: https://sci.ldubgd.edu.ua/jspui/handle/123456789/8615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPalchevska, Oleksandra-
dc.contributor.authorLuchyk, Alla-
dc.contributor.authorTaran, Oksana-
dc.contributor.authorSharmanova, Natalia-
dc.contributor.authorDemydenko, Ganna-
dc.date.accessioned2021-10-17T19:10:16Z-
dc.date.available2021-10-17T19:10:16Z-
dc.date.issued2021-
dc.identifier.citationA. Luchyk, O.Taran, O. Palchevska, N. Sharmanova, G. Demydenko Corpus-driven Approaсh to Ukrainian Е-anecdotes Study. CEUR Workshop Proceedings. Proceedings of the 5th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2021). Volume I: Main Conference. Kharkiv, Ukraine, April 22-23, 2021. P. 424–434.en_US
dc.identifier.urihttp://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/8615-
dc.description.abstractThe Ukrainian е-anecdotes corpus was created in order to describe structural and linguistic features of Ukrainian e-anecdotes. It contains 500 anecdotes, its volume is 18,582 tokens. Corpus-driven approach with Sketch Engine corpus management allowed to describe some linguistic and quantitative characteristics of Ukrainian e-anecdotes, to identify rare/unusual words in the corpus of e-anecdotes and interpret them, to analyze the keyword collocations and to determine linguistic and genre features of Ukrainian anecdotes, as well as to identify the ethnonymic collocations as the ethnic stereotypes markersen_US
dc.language.isoenen_US
dc.publisherKharkiv, Ukraine, April 22-23, 2021en_US
dc.relation.ispartofseriesCEUR Workshop Proceedings. Proceedings of the 5th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2021). Volume I: Main Conference.;-
dc.subjectCorpusen_US
dc.subjectthe Ukrainian language е-anecdoteen_US
dc.subjectfrequencyen_US
dc.subjectscoreen_US
dc.subjectSkecth Engineen_US
dc.titleCorpus-driven Approaсh to Ukrainian Е-anecdotes Studyen_US
dc.typeArticleen_US
Appears in Collections:2021

Files in This Item:
File Description SizeFormat 
paper31.pdf1.96 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.