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Abstract. This paper presents an overview of a quintuple inverted pendulum system
within the Isaac Sim simulation environment. Inverted pendulum systems, with their in-
herently unstable nature, are common benchmarks in robotics and control engineering for
testing new control strategies. While controlling pendulum configurations has seen signif-
icant advancements, managing the increased complexity and unpredictability of systems
with multiple pendulums remains a technical challenge. This study extends the scope of
existing research by introducing a more complex system with five pendulums in a stacked
configuration. By utilizing the Isaac Sim environment, we demonstrate the feasibility of
simulating and controlling such system, achieving stable upright positions. Additionally,
this research contributes to bridging the gap between hardware and simulation by inte-
grating with ROS2, a widely-used robotics middleware framework. Our results underscore
great capabilities of Isaac Sim for modeling and testing sophisticated control algorithms
and open new avenues for the development of scalable control solutions for complex multi-
body systems.

Keywords: inverted pendulum, linear quadratic regulator, NVIDIA Isaac Sim, system
architecture, ROS2, equations of motion

1 Introduction and Literature Review

Inverted pendulum systems have been widely studied due to their practical applications in
robotics, automation, and control engineering [7]. It is a simple yet highly dynamic system
that provides an ideal testbed for control and stability analysis. A classic example of an inverted
pendulum system is a pendulum attached to a cart, capable of moving along a horizontal track.
The challenge is to maintain the pendulum in an upright position using a control input that
moves the cart back and forth along the track. This problem has been extensively studied in the
literature and has led to the development of a wide range of control algorithms.

Recent research has focused on developing control algorithms for single and double inverted
pendulum systems to maintain stability and perform dynamic maneuvers. One approach typically
involve deriving mathematical models of the system dynamics and designing controllers based on
these models. Other approaches, on the other hand, rely on machine learning and reinforcement
learning techniques to learn control policies directly from data. These approaches have been
successful in achieving stable upright positions and performing swing-up maneuvers for single
and double pendulum systems.
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Simulation environments provide a safe and cost-effective way to test and evaluate complex
control algorithms before deploying them in the real world. Isaac Sim is a powerful and flexible
platform for building and simulating robots and other complex systems. It allows for high-fidelity
simulations of complex physical systems and provides a range of tools for designing and testing
algorithms.

This paper aims to extend the scope of research on inverted pendulum control and stability
by implementing a system in Isaac Sim and demonstrating the effectiveness of a hybrid control
algorithm for stabilizing the system in upright positions and performing swing-up maneuvers.
The results showcase the capabilities of the platform for modeling and testing for multi-pendulum
systems in a virtual environment.

(a) Isaac Sim view (b) RViz2 view

Fig. 1: Swing-up maneuver

In the context of controlling the inherently unstable inverted pendulum (IP) system, one work
explores the application of linear techniques, specifically the Proportional-integral-derivative
(PID) and Linear quadratic regulator (LQR) control methods [11]. Despite their conventional
use in linear systems, the study adapts these methods to effectively control the highly nonlinear
IP system. The primary goal is to achieve precise cart positioning while maintaining the inverted
pendulum in its upright orientation. The research highlights the practicality and robustness of
LQR and PID control through extensive simulations conducted in Matlab-Simulink. Both sce-
narios, with and without disturbance input, are considered, revealing the advantages of the LQR
control approach in optimizing system performance. Amidst the array of advanced control tech-
niques, this investigation underscores the simplicity and effectiveness of LQR and PID control
when applied to nonlinear systems, offering valuable insights for the control of complex systems
like the inverted pendulum-cart dynamic system.

One interesting work introduces a concept of a 2-DOF inverted pendulum incorporated within
an Omnidirectional mobile platform (OMP) [17]. The OMP utilizes three omnidirectional wheels
arranged in a triangular configuration, granting it the capability to move in all directions on
the floor while maintaining the balance of the 2-DOF IP. Unlike previous studies, this approach
decouples the system into two subsystems: the 2-DOF IP and the OMP. It presents dynamic mod-
eling of both components and proposes an adaptive backstepping control method, particularly
addressing situations where the distance between the center of gravity of the rod and the rotary
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point on the OMP is unknown. The stability and convergence of the control method are rigor-
ously established through Lyapunov function analysis offering both simulation and experimental
results that provide compelling evidence of the controller’s effectiveness.

Another paper delves into the balance control challenges of an inverted pendulum system
which is uniquely combined with an omni-directional wheeled mobile robot [10]. This system can
be configured either as a rotary inverted pendulum or as a spherical one. Notably, the omni-
directional wheeled mobile robot is designed to deliver translational force for the balancing of
the spherical pendulum and provide a moment for the rotary counterpart. The authors put forth
detailed dynamic models for these configurations and design stabilizing controllers leveraging
second-order sliding mode control. A salient feature of this work is its emphasis on robustness
to uncertainties and disturbances, wherein the second-order sliding mode control showcases su-
periority over conventional sliding mode control and LQR control in various scenarios, such as
managing significant initial deviations from the pendulum’s upright position. This work sheds
light on the intricacies of integrating complex systems and offers a comprehensive approach to
balancing control in multifaceted environments.

Another method utilizes a pole-independent, single-input, multi-output explicit linear Model
predictive control (MPC) strategy to achieve stability around desired equilibrium points [13]. By
relying on a generalized prediction model and a quadratic cost function with just two adjusted
control parameters, the controller ensures a priori prescribed system gain margin and rapid
pendulum response, all while simplifying the tuning process. Furthermore, the approach provides
practical insights into the impact of velocity cost function weight factors on system transient
performance, offering valuable guidelines for real-world implementation.

In the context of hardware implementation, recent research presents a contribution where a
triple inverted pendulum system is successfully implemented using state-of-the-art technology
and a custom ARM/FPGA-based control platform [15]. This work addresses the challenges of
hardware precision, low-latency wireless data communication for feedback, and dynamic con-
trol requirements. It highlights the importance of both control theory and hardware design for
creating a well-functioning physical model of complex multi-link inverted pendulum systems.

Zhang, Wang, and Li’s study [18] introduces stabilization method for a quadruple inverted
pendulum. Utilizing a combination of adaptive fuzzy control and variable gain H ∞ regulator,
this work addresses the complex dynamics of high-degree-of-freedom systems.

Chen’s dissertation [8] investigates the dynamics of multiple-degree-of-freedom inverted pen-
dulums, particularly focusing on stabilization under periodic vertical forces. This work extends
beyond single-degree systems, combining numerical simulations and experiments to analyze sta-
bilization effects through amplitude and frequency variations. Bondada and Nair’s 2023 study [6]
examines the dynamics of multiple pendulum systems with a moving pivot. Their research pro-
vides insights into the complex behavior of these systems when subjected to both translational
and tilting movements.

Inverted pendulum systems present a challenging control problem, with a wide variety of
approaches and techniques proposed to stabilize the system. Linear and nonlinear control al-
gorithms, as well as machine learning-based approaches, have all been used to control inverted
pendulum systems. While each approach has its strengths and weaknesses, there is no one-size-
fits-all solution to controlling inverted pendulums. Instead, the choice of control algorithm will
depend on the specific requirements of the application, such as the desired performance metrics,
computational resources available, and system parameters.

This paper discusses our efforts in simulating a pendulum system using the Isaac Sim envi-
ronment. Our primary focus has been on developing a robust Robot Operating System 2 (ROS2)
infrastructure to facilitate control and simulation, acknowledging that while our work is an ini-
tial step towards understanding complex systems, it remains primarily explorative. By leveraging
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Isaac Sim’s simulation capabilities, we aim to provide insights into the dynamics and potential
control strategies for multi-pendulum systems. This research contributes to the field by offering
a foundation for future studies, rather than definitive solutions, and highlights the challenges
and potential of simulation in advancing control theory.

2 Materials and Methods

2.1 System Overview

To facilitate the modeling of the control and stabilization of a quintuple inverted pendulum
system and to study the stabilization process, a system architecture has been developed utiliz-
ing the Isaac Sim platform [4]. This architecture comprises components and packages structure
highlighted in Figure 2a, 2b respectively:

– Isaac Sim simulator: a powerful tool for robotic simulations which uses the Universal
Scene Description (USD) format to represent the custom robot model, including the physical
characteristics and dynamics of the quintuple inverted pendulum.

– ROS2 Bridge Extension: serves as a bridge between the Isaac Sim and the ROS2 ecosystem
allowing to control and monitor the simulated robot using ROS2.

– Stabilization controller: primary role is to control the linear module of the quintuple
inverted pendulum stabilizing in an upright position. It receives sensor data, processes it,
and sends control commands to the specific hardware interface.

– ROS2 control: provide a framework for controlling and managing robot hardware. They
offer standardized interfaces for robot hardware and simulation components.

– Hardware interfaces: This component represents the custom hardware interface abstrac-
tions specific to the robot. It acts as a bridge between the ROS2 and the actual hardware
components of the robot. It translates high-level control commands from ROS2 into low-level
commands that the hardware can understand.

– RViz2: a powerful visualization tool in the ROS 2 ecosystem. It allows users to visualize robot
data, sensor data, and other relevant information in a graphical interface. It’s commonly used
for debugging, monitoring, and understanding the behavior of robots [3].

– RViz2 plugins: an extendable modules for Rviz2. They enhance the system’s capabilities
by enabling the addition of custom displays and interactive elements specific to the robotic
application’s requirements.

2.2 NVIDIA Isaac Sim

Isaac Sim offers several critical features that make it an ideal choice for simulating multi-
pendulum systems:

– Physics simulation: Isaac Sim incorporates a physics engine that provides accurate and
realistic simulations of rigid body dynamics, including collision detection and response.

– Sensor simulation: The environment supports a variety of sensors, including cameras,
lidar, and depth sensors. These sensors can be integrated into the simulated robotic system,
allowing for sensor-based control and perception experiments.

– Customizable environments: Isaac Sim enables the creation of customized environments,
including both physical layouts and virtual terrains. This flexibility is valuable for designing
scenarios that mimic real-world conditions.
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(a) Components (b) Apps structure

Fig. 2: Architecture overview

– Integration with ROS2: The simulation environment seamlessly integrates with the ROS2,
a widely used robotics middleware. This integration simplifies the development and testing
of control algorithms, as it provides a framework for managing hardware interfaces and
communication between system components.

– Support for GPU Acceleration: NVIDIA’s GPU technology accelerates simulations, mak-
ing it possible to simulate complex systems efficiently. This is particularly advantageous for
real-time control experiments and rapid prototyping.

– Isaac Gym: Extends simulator capabilities to support Reinforcement learning (RL) ex-
periments allowing for the training of control policies for robotic systems in a simulated
environment [12].

2.3 ROS2

The integration of ROS2 into the simulation framework provides several advantages [16]:

– Modular framework: offers a modular and flexible framework for managing robot hardware
interfaces, communication between nodes, and high-level robot behaviors.

– Hardware interfaces: allows easy integration with various hardware interfaces, facilitating
the connection of virtual sensors and actuators to the simulated robotic system.

– Communication: provides a communication infrastructure that facilitates data exchange
between different components of the system. This enables the seamless flow of information,
enhancing system control and coordination.

– Real-time capabilities: ROS2 includes real-time communication mechanisms that are cru-
cial for applications requiring precise timing and control. It allows for the integration of
real-time controllers and systems.

– Cross-Platform compatibility: ROS2 supports various operating systems, making it ver-
satile for deployment on different hardware platforms. This cross-platform compatibility sim-
plifies the deployment of robotic systems across a range of environments.
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– Community and ecosystem: ROS2 benefits from a thriving community and an exten-
sive ecosystem of libraries, tools, and packages. This ecosystem accelerates development by
providing access to pre-built components and solutions.

2.4 ROS2 Control Framework

The ROS2 Control framework is a pivotal component of our system architecture, offering a
comprehensive set of tools and capabilities for controlling robotic systems [5]. Key features of
the framework include:

– Hardware abstraction: ROS2 Control provides a standardized and modular interface for
hardware abstraction. It allows for the seamless integration of various robot components,
including sensors and actuators, while maintaining hardware independence.

– Controller management: The framework offers a controller management system that sim-
plifies the deployment and execution of control algorithms. It supports both position and
velocity controllers, making it versatile for a wide range of robot types.

– Real-time control: ROS2 Control is designed to meet real-time requirements, enabling
precise control of robotic systems. It includes features for managing control loops with low-
latency and high-frequency updates.

– Configuration flexibility: The framework allows for dynamic reconfiguration of control
parameters, which is crucial for adapting to different tasks and environments. This flexibility
enhances the adaptability of the robot’s control system.

– Simulation integration: ROS2 Control seamlessly integrates with simulation environments
like the Isaac Sim. This integration enables the development, testing, and validation of control
algorithms in a simulated environment before deploying them to physical robots.

2.5 Unified Robot Description Format (URDF)

The robot consists of several interconnected components, each defined using xacro macros and
includes for modularity and ease of customization:

1. Base link: The robot’s base link, denoted as base_link, serves as the central reference point
for the entire system.

2. Rail: The component represents a rail or track on which the robot moves. It’s attached to
the base_link and is designed to constrain the robot’s motion along a linear path.

3. Foots: These components, denoted as foot_1_base_link and foot_2_base_link, are at-
tached to the base_link and represent the supports or feet on which the robot rests. They
also serve as the connection points for the robot’s legs.

4. Legs: The leg_1_base_link and leg_2_base_link components are connected to the foot
links and represent the robot’s legs. These legs are responsible for supporting and controlling
the pendulum segments.

5. Caret: The caret_base_link component is connected to the rail and represents a movable
carriage-like structure. It can slide along the rail to change the robot’s configuration, which
is presented in Figure 3a.

6. Connectors: These components, denoted as connector_1_link through connector_5_link,
serve as connectors between the pendulum segments and the caret. They facilitate the at-
tachment of pendulum segments and enable their rotational movement.

7. Pendulums: The robot comprises five pendulum segments, each represented by compo-
nents such as pendulum_1_link through pendulum_5_link. These pendulum segments are
connected in series and can rotate freely, which is preseteted in Figure 3b, 3c).
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(a) Caret joint (b) Pendulum joint (c) Pendulum
joints

Fig. 3: Joints model details

2.6 Mathematical Modeling

The mathematical model includes kinematics, dynamics, and the derivation of equations of mo-
tion, addressing the complexity and nonlinear dynamics arising from the coupling of multiple
pendulums.

The kinematic analysis involves examining the motion of each pendulum and the carriage.
The horizontal and vertical displacements, along with the respective velocities of each pendulum’s
center of mass, are given by the following equations:

xi = Xc +

i−1∑
k=1

lk sin(θk) +
1

2
li sin(θi), (1)

yi = −
i−1∑
k=1

lk cos(θk)−
1

2
li cos(θi), (2)

ẋi = Ẋc +

i−1∑
k=1

lkθ̇k cos(θk) +
1

2
liθ̇i cos(θi), (3)

ẏi =

i−1∑
k=1

lkθ̇k sin(θk) +
1

2
liθ̇i sin(θi). (4)

Various parameters and variables are defined in Table 1.
The dynamics of the system are characterized by gravitational forces, inertial forces, external

forces, and the effects of friction and damping. Specifically:

– The external force F (t) impacts the translational movement of the system.
– Each pendulum experiences gravitational forces and is subject to damping at its pivot.
– Friction at the carriage and damping at the pendulum pivots are modeled as viscous damping,

proportional to the velocity and angular velocities.

The kinetic and potential energies, as well as the dissipative energy due to damping, are
expressed as:
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F (t)

K1

M

l1,m1
θ1

l2,m2θ2

K2

l3,m3

θ3

K3

l4,m4

θ4

K4

K5

l5,m5
θ5

Fig. 4: Sketch diagram of the system.
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Table 1: Definitions of variables and parameters.
Variable Description

θi Angular position of the ith pendulum relative to the vertical.
li Length of the ith pendulum.
mi Mass of the ith pendulum.
M Mass of the carriage.
Ki Stiffness of the hinge connecting the ith pendulum to the previous one or to the carriage.
F (t) External force applied to the carriage as a function of time.
xi Horizontal displacement of the center of mass of the ith pendulum.
yi Vertical displacement of the center of mass of the ith pendulum.
ẋi Horizontal velocity of the center of mass of the ith pendulum.
ẏi Vertical velocity of the center of mass of the ith pendulum.
Xc Horizontal displacement of the carriage’s center of mass.
Ii moment of inertia of the ith pendulum.
g Acceleration due to gravity.
b Coefficient of viscous friction for the carriage.
di Damping coefficients for each pendulum joint.
H Height of the stand.

Ttotal =
1

2
MẊ2

c +
1

2

5∑
i=1

mi

(
ẋ2
i + ẏ2i

)
+

1

2

5∑
i=1

Iiθ̇
2
i , (5)

Vtotal =

5∑
i=1

mighi, (6)

(7)

where hi = H − yi the height of the center of mass of the ith pendulum, Ii = 1
12 limi moment

of inertia of the the ith pendulum center of mass (thin rod).
The Euler-Lagrange equations, extended to include non-conservative forces, govern the dy-

namics of the system. These forces are incorporated through the Rayleigh dissipation function:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+

∂R

∂q̇j
= Qj , (8)

where L is the Lagrangian, defined as

L = Ttotal − Vtotal, (9)
and R is the Rayleigh dissipation function:

R =
1

2
bẊ2

c +
1

2

∑
i

diθ̇
2
i , (10)

where ∂R
∂q̇j

corresponds to the dissipative forces acting on the generalized coordinates qj .
The complete set of EoMs is derived by substituting kinematic equations (1, 2, 3, 4) into

dynamic equations (5, 6), and then along with the damping terms (10), into the Euler-Lagrange
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equation (8) and taking derivatives (see 15, 16). Initially, Kane’s method [9] was considered for its
great efficiency in handling nonholonomic systems. However, opted for Lagrange’s method due to
its more straightforward application to multi-body systems. This process yields a comprehensive
description of the motion for each component of the system, encapsulating the intricate dynamics
resulting from the coupling of multiple pendulums.

The state-space representation is a widely used mathematical model for control systems. It
describes the system’s state at any given time and how it evolves over time in response to inputs.
For the quintuple inverted pendulum system, we can define the state-space representation as
follows:

Ẋ = AX +Bu, (11)
Y = CX +Du, (12)

where A is the system matrix, B is the input matrix, C is the output matrix, and D is the
feedforward matrix. These matrices are determined based on the system’s linearized equations
of motion.

Here, A is the system matrix representing the dynamics of the pendulums and the cart, B is
the input matrix relating the input forces to the state changes, C is the output matrix that maps
the state to the output Y , and D is the feedforward matrix. These matrices will be determined
based on the linearized equations of motion of the system.

Linearization simplifies the nonlinear dynamics of a system around a specific operating point,
often an equilibrium. For the quintuple inverted pendulum system, we linearize around the equi-
librium point where all pendulums are upright and stationary, and the cart is at rest. The
linearized state-space model is given by:

A = Jacobian of system dynamics evaluated at equilibrium,

B = Jacobian of input dynamics evaluated at equilibrium,

C = Matrix relating state variables to measured outputs,
D = Matrix relating inputs directly to outputs.

The equilibrium point of the quintuple inverted pendulum system is defined as the state where
all pendulums are perfectly vertical and stationary, and the cart is not moving. This translates
to all angular positions θi being set to π and all angular velocities θ̇i as well as the cart’s velocity
ẋ being zero. This point represents a state of balanced forces and moments, crucial for analyzing
the system’s stability and designing appropriate control strategies.

To achieve upright stabilization of the quintuple inverted pendulum system, we implement a
LQR controller. The LQR controller is designed to minimize the following quadratic cost function:

J =

∫ ∞

0

(XTQX + uTRu) dt (13)

Here, J is the cost function, Q and R are weight matrices for the states and control inputs,
respectively. This function balances the system’s performance in terms of state deviation and
control effort. The SymPy library was employed for deriving the system’s equations of motion
and verifying the controllability condition.

Given the linearized state-space model with matrices A and B, the optimal control law is
obtained as:
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u = −KX (14)

where K is the gain matrix calculated to achieve the desired system performance. The con-
troller’s implementation includes solving for K using the Algebraic Riccati Equation and applying
the control input u to maintain each pendulum in its upright position.

3 Experiment, Results and Discussions

(a) Whole stand (b) Pendulums (c) Caret

Fig. 5: USD model overview

The experiment was set up in the Isaac Sim environment, utilizing its advanced simulation
capabilities to model a system. The key focus was on integrating an LQR controller within this
simulation to explore its potential for stabilizing. Given the exploratory nature of this research,
the setup was primarily aimed at understanding the dynamics of the system and the feasibility
of the control approach.

The planned procedure involves conducting a series of simulations under various initial con-
ditions to assess the pendulum system’s response. These trials are designed to incrementally
challenge the LQR controller, starting from minor perturbations and gradually increasing to
more significant deviations. This step-by-step approach is intended to provide insights into the
controller’s effectiveness across a spectrum of scenarios.

Although default URDF4 importer works to get USD model, some physical adjustments had
to be done in order to start experimenting with physical engine (although final values are to be
discovered), which are composed into Table 2:

To ensure that simulations closely approximate real-world conditions, the SimReady specifi-
cation [14] is leveraged. By using SimReady assets in simulations, a virtual environment closely
mirroring the physical world is created. This level of realism is essential for validating the per-
formance of control algorithms and assessing their suitability for real-world applications. The
model and project structure can be seen in Figure 6, 5.

This research opens several avenues for future work in controlling and stabilizing the complex
control systems:
4 http://wiki.ros.org/urdf/XML/model

http://wiki.ros.org/urdf/XML/model
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Table 2: Physics adjustments.
Prim Property Value

pendulum_*_link linear damping 0.5
pendulum_*_link angular damping 1.5

caret_joint damping 10000.0
caret_joint stiffness 0.0

(a) Model

(b) Props

Fig. 6: USD model structure
kuro is robot’s codename

– Adoption of Advanced Control Techniques: The exploration of advanced control meth-
ods, notably RL and DRL, holds great promise. With the advent of NVIDIA’s GR00T and
Isaac Lab [1,2], there are now more opportunities to integrate these sophisticated approaches,
potentially leading to more adaptive and robust control strategies for complex systems.

– Real-world Validation and Experiments: To bridge the gap between virtual simulations
and real-world applications, aim is to conduct physical experiments. These experiments will
not only validate virtual results but also test the effectiveness and reliability of the control
algorithms under real-world conditions.

4 Conclusion

This study explored the application of Isaac Sim and ROS2 to simulate and manage a quintuple
inverted pendulum system. Through this investigation, we demonstrated the practical utility of
integrating an LQR controller within this simulation environment, aimed primarily at under-
standing the system’s dynamics and testing the feasibility of control strategies under simulated
conditions.

While the findings suggest that Isaac Sim is a powerful tool for detailed and realistic sim-
ulations, they also underscore the challenges that remain in translating these simulations to
real-world applications. In conclusion, this research serves as a preliminary exploration into the
possibilities and challenges of simulating complex control systems. It highlights the importance of
continued development and testing within simulated environments to advance our understanding
and capabilities in controlling highly dynamic systems.

Future work will seek to refine control strategies and explore the potential of advanced control
techniques such as RL and DRL, potentially utilizing platforms like NVIDIA’s GR00T and Isaac
Lab.
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A Mathematical Modeling

L =
1

2
Mẋ2 +

9

2
glm cos(θ1) +

7

2
glm cos(θ2) +

5

2
glm cos(θ3) +

3

2
glm cos(θ4) +

1

2
glm cos(θ5)

+
7

2
l2m cos(θ1 − θ2)θ̇1θ̇2 +

5

2
l2m cos(θ1 − θ3)θ̇1θ̇3 +

3

2
l2m cos(θ1 − θ4)θ̇1θ̇4

+
1

2
l2m cos(θ1 − θ5)θ̇1θ̇5 +

5

2
l2m cos(θ2 − θ3)θ̇2θ̇3 +

3

2
l2m cos(θ2 − θ4)θ̇2θ̇4

+
1

2
l2m cos(θ2 − θ5)θ̇2θ̇5 +

3

2
l2m cos(θ3 − θ4)θ̇3θ̇4 +

1

2
l2m cos(θ3 − θ5)θ̇3θ̇5

+
1

2
l2m cos(θ4 − θ5)θ̇4θ̇5 +

13

6
l2mθ̇21 +

5

3
l2mθ̇22 +

7

6
l2mθ̇23 +

2

3
l2mθ̇24 +

1

6
l2mθ̇25

− 9

2
lm cos(θ1)θ̇1ẋ− 7

2
lm cos(θ2)θ̇2ẋ− 5

2
lm cos(θ3)θ̇3ẋ− 3

2
lm cos(θ4)θ̇4ẋ

− 1

2
lm cos(θ5)θ̇5ẋ+

5

2
mẋ2 (15)



Mẍ(t) + kx(t) + 9lm sin(θ1(t))θ̇1(t)
2

2 + 7lm sin(θ2(t))θ̇2(t)
2

2 + 5lm sin(θ3(t))θ̇3(t)
2

2

+ 3lm sin(θ4(t))θ̇4(t)
2

2 + lm sin(θ5(t))θ̇5(t)
2

2

− 9lm cos(θ1(t))θ̈1(t)
2 − 7lm cos(θ2(t))θ̈2(t)

2 − 5lm cos(θ3(t))θ̈3(t)
2

− 3lm cos(θ4(t))θ̈4(t)
2 − lm cos(θ5(t))θ̈5(t)

2

+5mẍ(t)− Fext(t) = 0,

cθ̇1(t) +
9glm sin(θ1(t))

2 + 7l2m sin(θ1(t)−θ2(t))θ̇2(t)
2

2 + 5l2m sin(θ1(t)−θ3(t))θ̇3(t)
2

2

+ 3l2m sin(θ1(t)−θ4(t))θ̇4(t)
2

2 + l2m sin(θ1(t)−θ5(t))θ̇5(t)
2

2 + 7l2m cos(θ1(t)−θ2(t))θ̈2(t)
2

+ 5l2m cos(θ1(t)−θ3(t))θ̈3(t)
2 + 3l2m cos(θ1(t)−θ4(t))θ̈4(t)

2 + l2m cos(θ1(t)−θ5(t))θ̈5(t)
2

+ 13l2mθ̈1(t)
3 − 9lm cos(θ1(t))ẍ(t)

2 = 0,

cθ̇2(t) +
7glm sin(θ2(t))

2 − 7l2m sin(θ1(t)−θ2(t))θ̇1(t)
2

2 + 5l2m sin(θ2(t)−θ3(t))θ̇3(t)
2

2

+ 3l2m sin(θ2(t)−θ4(t))θ̇4(t)
2

2 + l2m sin(θ2(t)−θ5(t))θ̇5(t)
2

2 + 7l2m cos(θ1(t)−θ2(t))θ̈1(t)
2

+ 5l2m cos(θ2(t)−θ3(t))θ̈3(t)
2 + 3l2m cos(θ2(t)−θ4(t))θ̈4(t)

2 + l2m cos(θ2(t)−θ5(t))θ̈5(t)
2

+ 10l2mθ̈2(t)
3 − 7lm cos(θ2(t))ẍ(t)

2 = 0,

cθ̇4(t) +
3glm sin(θ4(t))

2 − 3l2m sin(θ1(t)−θ4(t))θ̇1(t)
2

2 − 3l2m sin(θ2(t)−θ4(t))θ̇2(t)
2

2

− 3l2m sin(θ3(t)−θ4(t))θ̇3(t)
2

2 + l2m sin(θ4(t)−θ5(t))θ̇5(t)
2

2 + 3l2m cos(θ1(t)−θ4(t))θ̈1(t)
2

+ 3l2m cos(θ2(t)−θ4(t))θ̈2(t)
2 + 3l2m cos(θ3(t)−θ4(t))θ̈3(t)

2 + l2m cos(θ4(t)−θ5(t))θ̈5(t)
2

+ 4l2mθ̈4(t)
3 − 3lm cos(θ4(t))ẍ(t)

2 = 0,

cθ̇5(t) +
glm sin(θ5(t))

2 − l2m sin(θ1(t)−θ5(t))θ̇1(t)
2

2 − l2m sin(θ2(t)−θ5(t))θ̇2(t)
2

2

− l2m sin(θ3(t)−θ5(t))θ̇3(t)
2

2 − l2m sin(θ4(t)−θ5(t))θ̇4(t)
2

2 + l2m cos(θ1(t)−θ5(t))θ̈1(t)
2

+ l2m cos(θ2(t)−θ5(t))θ̈2(t)
2 + l2m cos(θ3(t)−θ5(t))θ̈3(t)

2 + l2m cos(θ4(t)−θ5(t))θ̈4(t)
2

+ l2mθ̈5(t)
3 − lm cos(θ5(t))ẍ(t)

2 = 0

(16)
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