International Telematic University UNINETTUNO, Rome, Italy Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

INTERNATIONAL WORKSHOP ON MODERN PROBLEMS OF ANALYSIS, OPTIMIZATION, APPROXIMATION AND THEIR APPLICATIONS

BOOK OF PROCEEDINGS

25th, 26th and 27th JUNE, 2025 Rome, Italy

Arbitrary random variables and Wiman's inequality for analytic functions in the unit disc

M. Kuryliak

Ivan Franko National University of Lviv, Lviv, Ukraine

${\bf kury liak mariya@gmail.com}$

O. Trusevych Lviv State University of Life Safety, Lviv, Ukraine

trusev14@gmail.com

Consider the class \mathcal{A} of an analytic function f in the disc $\mathbb{D} := \{z : |z| < 1\}$ of the form

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n. \tag{1}$$

Let $M_f(r) = \max\{|f(z)|: |z| = r\}$, $\mu_f(r) = \max\{|a_n|r^n: n \ge 0\}$, r > 0, be the maximum modulus and the maximal term of series (1), respectively.

We consider the random analytic functions of the form

$$f(z,\omega) = f(z,\omega_1,\omega_2) = \sum_{n=0}^{+\infty} R_n(\omega_1) \xi_n(\omega_2) a_n z^n,$$
 (2)

where $a_n \in \mathbb{C}$: $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1$, $(R_n(\omega))$ is the Rademacher sequence, $(\xi_n(\omega))$ is a sequence of complex-valued random variables (denote by Δ_{φ}) such that there exists a constant $\beta > 0$ and a function $\varphi(N, \beta) \colon \mathbb{N} \times \mathbb{R}_+ \to [1; +\infty)$ non-decreasing by N and β such that

$$\left(\mathbf{E}\left(\max_{0\leq n\leq N}|\xi_n|^{\beta}\right)\right)^{1/\beta} \simeq \varphi(N,\beta), \quad N\to+\infty, \quad \alpha=\overline{\lim_{N\to+\infty}}\frac{\ln\varphi(N,\beta)}{\ln N}<+\infty, \tag{3}$$

$$(\exists \gamma > 0)(\exists n_0 \in \mathbb{N}) \colon \sup \{ \mathbf{E} |\xi_n|^{-\gamma} \colon n \ge n_0 \} < +\infty. \tag{4}$$

Such class of random analytic functions denote by $\mathcal{A}(\varphi,\beta)$.

We will use the following notations

$$N(r) = \left[\frac{1}{1-r} \ln \frac{\mu_f(r)}{1-r}\right]^m, \quad m = \left[\alpha + \frac{2}{\beta}\right] + 4,$$

where [x] means integer part of x.

We obtain the asymptotic estimates for maximum modulus of functions $f \in \mathcal{A}(\varphi, \beta)$. Here sequence $(\xi_n(\omega))$ may not be sub-gaussian and may be dependent.

Theorem 1 ([1]). Let $\delta > 0$. For $f \in \mathcal{A}(\varphi, \beta)$ there exist $r_0(\omega) > 0$, a set $E(\delta) \subset (0; 1)$ of finite logarithmic measure (i.e. $\int_E (1-r)^{-1} dr < +\infty$) such that for all $r \in (r_0(\omega); 1) \setminus E$ we have with probability $p \in (0; 1)$

$$M_f(r,\omega) \leq \frac{\mu_f(r)}{(1-p)^{1/\beta}} \varphi(N(r),\beta) \Big((1-r)^{-2} \cdot \ln \frac{\mu_f(r) \varphi(N(r),\beta)}{(1-p)(1-r)} \Big)^{1/4+\delta}.$$

Let Ξ_{ρ} be the class of random variables $\{\xi_k(\omega)\}$ such that there exist constants $\rho > 0$ and $C_1 > 0$ such that for every $n \in \mathbb{Z}_+$ and any $t \in [0, +\infty)$ we have

$$P\{\omega \colon |\xi_k(\omega)| \ge t\} \le 2 \exp\left(-\frac{t^{\rho}}{C_1}\right). \tag{5}$$

Remark that Ξ_2 is the class of sub-gaussian random variables and Ξ_1 is the class of sub-exponential random variables.

Corollary 1. Let $\delta > 0$ and $\xi_k(\omega) \in \Xi_{\rho}$. Then for every $f \in \mathcal{H}(\varphi, \beta)$, there exist $r_0(\omega) > 0$ and a set $E(\delta) \subset (0,1)$ of finite logarithmic measure such that for all $r \in (r_0(\omega), 1) \setminus E$ with probability $p \in (0,1)$ we get

$$M_f(r,\omega) \le \frac{\mu_f(r)}{1-p} \left(\frac{1}{(1-r)^2} \cdot \ln \frac{\mu_f(r)}{(1-p)(1-r)} \right)^{1/4+\delta}.$$

Similar statements for random entire function one can find in [2].

- [1] A.O. Kuryliak, M.R. Kuryliak, O.M. Trusevych, Arbitrary random variables and Wiman's inequality for analytic functions in the unit disc, Mat. Stud. **61**, no.1, (2024), 39–45.
- [2] A.O. Kuryliak, O.B. Skaskiv, A.I. Bandura, Arbitrary random variables and Wimane $\mathcal{B}^{TM}s$ inequality for entire functions, Axioms. 13(11) (2024), 793.

On the stability of the maximum term of functional series in a system of functions

A.Yu. Bodnarchuk, O.B. Skaskiv

Ivan Franko National University of Lviv, Lviv, Ukraine 8andriy1111@gmail.com, olskask@gmail.com

111@gman.com, olskask@gman.com

M.M. Dolynyuk

Markiyan Shashkevych Brody profess. pedagog. college, Brody, Lviv region, Ukraine

m.dolyniuk@brodypk.ukr.education

Let us denote by L_+ the class of positive continuous on $\mathbb{R}_+ := [0, +\infty)$ functions l(t) such that $l(t) \uparrow +\infty$ $(t \to +\infty)$, and by \mathcal{W} we denote the class of functions $w \in L_+$ such that $\int_1^{+\infty} x^{-2} w(x) dx < +\infty$.

Let $S(f,\Lambda)$ be the class of positive convergent for all $x\geq 0$ the functional series of the form

$$F(x) = \sum_{k=0}^{+\infty} a_k f(x\lambda_k), \tag{6}$$

where $\Lambda = (\lambda_k)$ is a sequence of non-negative numbers such that $\lambda_k \neq \lambda_j$ for all $k \neq j$, $a_k \geq 0$ $(k \geq 0)$, and a positive increasing to $+\infty$ function f on $[0; +\infty)$ such that f(0) = 1 and $\ln f(x)$ is a convex function on the same interval. By $\mathcal{S}_*(f,\Lambda)$ we denote the class of formal series of form (6) such that $a_n f(x\lambda_n) \to 0$ $(n \to +\infty)$ for every $x \in \mathbb{R}_+$, i.e., for every $x \in \mathbb{R}_+$ there exists the maximal term

$$\mu(x, F) = \max\{|a_n|f(x\lambda_n): n \ge 0\} < +\infty.$$

In the case $f(x) \equiv e^x$, we denote $\mathcal{D}_*(\Lambda) := \mathcal{S}_*(f, \Lambda)$.

For a function $w \in L$ let us denote

$$B_w(x) = \sum_{n=0}^{+\infty} a_n e^{w(\lambda_n)} f(x\lambda_n).$$

From Theorem 2 and Theorem 3 ([3]), proved for entire multiple Dirichlet series, it follows the following statement.

Theorem A ([3], Theorem 2). Let $w \in L$, $B_w \in D_*(\lambda)$ and condition

$$\int_0^{+\infty} t^{-2} \ln \nu_0(t) dt < +\infty \tag{7}$$

satisfies, where $\nu_0(t)=\int\limits_0^t e^{w(x)}dn(x),\, n(x)=\sum_{\lambda_n\leq x}1.$ Then relation

$$\ln \mu(x, F) = (1 + o(1)) \ln \mu(x, B_w) \tag{8}$$

holds as $x \to +\infty$ outside some set $E \subset [0; +\infty)$, meas $E < +\infty$.

Theorem A implies the following corollary.

Corollary 1. Let $F \in \mathcal{D}_*(\Lambda)$. If there exists a function $w \in L$ such that $F_w \in \mathcal{D}_*(\Lambda)$, $\ln \nu \in \mathcal{W}$ (here $\nu(t) = \sum_{\lambda_n \leq t} e^{w(\lambda_n)}$) and

$$e^{-w(\lambda_n)} \le b_n \le e^{w(\lambda_n)} \quad (n \ge k_1), \tag{9}$$

then there exists a set $E \subset \mathbb{R}_+$ of finite Lebesque measure such that

$$\ln \mu(x, F) = (1 + o(1)) \ln \mu(x, B_{+}) = (1 + o(1)) \ln \mu(x, B_{-})$$
(10)

as $x \to +\infty$ $(x \notin E)$.