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Abstract

Rotor equipment material samples with varying degrees of degradation during long-term
operation are characterized by lower (up to 17%) corrosion and hydrogen resistance com-
pared to the initial state. The scheme of redistribution of carbides in structural components
in the initial state and after long-term operation is presented. The schemes of the turning
rotor shaft are visualized, while taking the microstructure features into account. During
long-term service, the properties of steels are affected by changes in the parameters of struc-
tural components caused by the action of a hydrogen-containing environment. Based on the
experimental data, the regression equation and approximation probability R2 value describ-
ing the change in the electrochemical parameters of 38KhN3MFA rotor steel samples after
200, 225, 250, and 350 thousand hours of operation were obtained. During machining, an
increase in hydrogen content was recorded in the chips, especially from degraded areas of
the rotor shaft (up to 7.94 ppm), while in undegraded zones, it ranged from 2.1 to 4.4 ppm.
A higher hydrogen concentration was correlated with increased surface roughness. The
use of LCLs improved surface quality by 1.5 times compared to LCLp. Dispersion caused
by degradation contributed to hydrogen accumulation and changed the nature of material
destruction. After repair, the rotors demonstrated stable operation for over 25 thousand
hours, with no reappearance of critical defects observed during scheduled inspections.

Keywords: degradation; 38KhN3MFA rotor steel; corrosion resistance; rotor shaft; power
equipment; electrochemical studies; hydrogen charging; turbo aggregate rotor shaft;
machining; hydrogen accumulation; steel structural components; hydrogen diffusion;
screening anions; computer vision methods

1. Introduction
One of the most critical parts of a turbine unit cooled by hydrogen gas is the rotor shaft

of the turbogenerator. The weight of a solid or welded rotor can reach 160 tunes with a
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length of 11 m. The rotor is made from 25Kh1M1FA, 30Kh3MVFA, and 38KhN3MFA steels.
The complex effects of hydrogen-containing media, temperature changes, and loads cause
changes in physical and mechanical properties in the surface and subsurface layers of the
rotor shaft (degradation) [1–6], and changes in a number of operational factors accelerate
degradation processes. Rotor replacement is extremely rare. The service life of these unique
parts is extended during scheduled or emergency repairs by surface machining of damaged
rotor surfaces using environmentally friendly lubricating and cooling fluids, followed
by sealing. Therefore, studying the patterns of changes in the physical and mechanical
properties of these steels for power machine building during long-term operation is an
urgent scientific task.

The novelty of this work is the development of a diagnostic approach based on chip
analysis for detecting hydrogen-induced degradation in 38KhN3MFA rotor shafts. A
correlation is established between hydrogen content in chips and surface roughness as
indicators of material damage. Regression equations describing electrochemical parameter
degradation over long-term service (200,000–350,000 h) are proposed. Additionally, a
novel repair methodology is evaluated using eco-friendly lubricating cooling liquids that
mitigate hydrogen embrittlement during machining and enhance surface quality. These
findings contribute to practical rotor life extension and structural safety in hydrogen-cooled
turbine systems.

The generalized scheme of the life cycle of power equipment (Figure 1a) shows that
at the third stage, its failure is accelerated due to aging. In order to prevent it, it is
necessary to focus on clarifying the mechanisms of degradation processes accompanied
by microstructural changes [7,8]. One of the possible schemes of such a phenomenon
(Figure 1b) is the stage of micropore formation and enlargement. The properties of the
studied steels are significantly affected by changes in the proportions of carbides, nitrides,
and intermetallic content [9–11].

Figure 1. Life cycle change curve of power equipment. λ (a): failure rate; t (a)—time.
Ex T (b)—exposure time. I—the period of commissioning; II—the period of normal operation; III—the
period of aging, degradation, and failure (a) [1]. I—stage; II—stage; III—stage (b). 1—isolated cavities,
2—approximate cavities, 3—macrocracks, 4—formation and propagation of macrocracks [7].

During long-term operation, hydrogen has a significant effect on the properties of
steels for power engineering, which at low concentrations can lead to plasticization of
the metal matrix [12], and with an increase in its content and an increase in concentration
in local volumes, it contributes to the “embrittlement” of this matrix, the initiation and
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propagation of cracks [13–19]. In some cases, this leads to catastrophic consequences during
the operation of power equipment in turbine halls [20–24].

Hydrogen vapor affects the surface and subsurface layers of the turbine rotor shaft.
Unlike the turbine generator rotor shaft, temperatures on the surface of turbine rotor shafts
vary within a fairly wide range along the length, which affects the intensity of changes
in mechanical properties. On the high-pressure rotor shaft of the K-200-130 turbine, the
temperature in the flow area is about 510 ◦C and closer to the first stage; it decreases
to 280 ◦C near the last stage. On the HPR shaft of the K-1000-60/3000 turbine in the flow
section, the temperature near the first stage is about 265 ◦C and 155 ◦C near the last five
stages. In the area of the end seals, the temperatures are even lower, and in the area of the
order bearings, temperatures are 55–60 ◦C.

During long-term operation, the hardness on the shaft surface decreased from 290 to
250 HB [25], the amount of cementite decreased from 87% to 62%, and the proportion of
free ferrite increased from 5% to 20%. In degraded areas of the rotor shaft, it is necessary
to carry out repair work related to machining [26–29]. During this process, lubricating
coolants are used, which also perform inhibitory functions to prevent the development
and spread of corrosion processes [30,31]. It is proposed to use environmentally friendly
coolants containing sunflower or rapeseed oil [32–34].

The aim of this work is to compare the electrochemical parameters of the experimental
samples in the form of chips (taken during the process of turning or drilling) from the rotor
surfaces in the initial state and during long-term operation of 38KhN3MFA steel, analyze
the data indicating changes in the physical and chemical properties of the material during
long-term operation, and relate these factors to the morphology of the studied chips.

2. Materials and Methods
The samples of 38Kh3MFA steel were studied in the initial state (witness samples) and

those taken during long-term operation in contact with technological hydrogen-containing
media (mainly after 200, 250, and up to 350 thousand hours). The samples of chips from
the supply material and those obtained during machining of the shaft after 200, 225, and
250 thousand hours of operation were studied. The microstructure of the studied samples
is characterized by the presence of bainite and ferrite. Bainite contains a mixture of carbon-
saturated ferrite and iron carbide. The grain size in the shaft steel after heat treatment is
within 25. . .35 µm.

The corrosion potential (Ecor) and the corrosion current density (Icor) were investi-
gated using an EG&INSTRUMETS potentiostat (Model N 362) at a potential sweep rate of
10 mV/min. A standard three-electrode electrochemical cell with a silver chloride reference
electrode was used, which was connected to the test electrode using an electrolytic bridge
and a Haber–Luggin capillary, as well as an auxiliary platinum electrode. The polarization
curves were obtained on samples with a diameter of 11.3 mm, which were pre-pressed into
PTFE. The influence of samples of lubricating and cooling fluids (LCF) based on sunflower
(LCFs), rapeseed (LCFr), and petroleum oil (LCFp) was studied. Since the cooling circuit of
turbine generators may contain distilled water condensate (pH 5.9) in addition to hydrogen,
the corresponding comparative tests were carried out.

Figure 2 presents a flowchart of the technological process for rotor shaft diagnostics,
which includes the main technological operations, including chip sampling.
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Figure 2. Flowchart of the rotor shaft diagnostics process.

3. Results
3.1. Structural-Phase Approaches and Reflections

This research was based on the concept that during long-term operation, due to the
complex action of factors (mainly hydrogen), structural changes occur in the surface and
subsurface layers of the turbine unit shaft.

Metallographic studies of the shaft surfaces of a number of turbine units have recorded
changes in the orientation of ferrite and cementite inclusions [25], indicating the course of
deformation processes due to the action of hydrogen gas [35]. Degradation processes on
the surface of the turbine unit rotor shaft cause carbides to move from the central part of
the grain to the boundaries (Figure 3a,b). During long-term operation, there is a gradual
accumulation of hydrogen in the structural components: the cement component is capable
of accumulating 10. . .12 ppm, pearlite 7–8 ppm, and ferrite 1–2 ppm [36] (Figure 3c,d).
Taking in to account that structural components (this is most true for carbides) accumulate
hydrogen, the probability of brittle fracture increases and the conditions of fracture during
machining change.



Energies 2025, 18, 4368 5 of 26

Figure 3. Scheme of redistribution of carbides in structural components: conditionally initial state (a);
after long-term operation (b); diagram of the amount of hydrogen in structural components (c,d).
Designations: 1—ferrite; 2—pearlite; 3—carbides.

An increase in temperature changes the quantitative composition of alloying elements
(increases the concentration of Cr, Mo, and Mn, and decreases Fe without changing V) in
the complex carbide M23C6 [37], and is accompanied by an increase in their size, which
affects the performance properties of the rotor steel.

The quality of machining is significantly influenced by structural and phase compo-
nents (in addition to carbides, this is sulfide (MnS), which at elevated temperatures during
long-term operation of power equipment [36,37] concentrates along grain boundaries
and has an elongated shape). In waterlogged samples, cracks appear along the elon-
gated inclusions [38], and the presence of sulfur (including in the form of MnS inclusions
(their size, shape, and distribution) also affects the quality of machining and the nature of
fracture [39–48].

Figure 4 shows a generalized schematic diagram illustrating the microstructure of
38Kh3NMFA rotor steel with a ferrite–pearlite base and the mechanisms of interaction with
hydrogen. The diagram shows the paths of hydrogen (H) diffusion through the matrix,
reversible and irreversible traps, as well as local areas of embrittlement. Ferrite (light
yellow) and pearlite (light gray) form the basis of the microstructure. Dislocations and grain
boundaries act as reversible traps capable of releasing hydrogen under mechanical stress.
Complex carbides of the Cr/Mo/Fe3C type, located at grain boundaries or in the matrix,
function as irreversible traps, accumulating hydrogen and promoting the formation of
microcracks. Accumulated hydrogen at grain boundaries and in carbide phases can initiate
intergranular or localized brittle fracture, which is particularly critical for turbogenerator
rotors operating under hydrogen cooling conditions.

Complex carbides in 38KhN3MFA steel most commonly form at grain boundaries
and phase boundaries (ferrite–pearlite), and less frequently within grains. Their location
directly affects the ability to accumulate hydrogen and the susceptibility to degradation
under service conditions.

In steels with a ferrite–pearlite structure, such as 38KhN3MFA, hydrogen saturation
can indeed lead to the formation of the following:

• new dislocations;
• new or displaced grain boundaries;
• substructures (subgrains);
• zones of local rearrangement;
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• in some cases, heterogeneous formation of new grains (structure reformation).

(a) (b) 

Figure 4. Generalized schematic diagram illustrating the microstructure of 38KhN3MFA rotor
steel with a ferrite–pearlite metallic matrix: (a) before hydrogenation; (b) after hydrogen charging:
1—ferrite; 2—pearlite; 3—carbides (M23C6, M7C3, Fe3C); 4—carbides (Cr/Mo/Fe3C); 5—dispersed
carbides (Mo2C, VC); 6—manganese sulfides (MnS); 7—intermetallic phases; 8—various inclu-
sions (nitrides, phosphides, oxides, etc.); 9—hydrogen; 10—surface crack induced by hydrogen;
11—surface-initiated crack propagating into the material; 12—crack; 13—newly formed interface
boundary in ferrite; 14—newly formed interface boundary in pearlite; 15—microcrack formation due
to stress concentration near structural constituents such as carbides and others. The arrows indicate
the conditional distribution of hydrogen in the structural components.

3.2. Effect of Structural-Phase Composition Under Conditions of Gradual Hydrogen Charging
on Machining

Taking into account the above features of structural and phase changes, the following
technological operations are proposed for machining (Figure 5a,b). Slowly gradual feeding
(1) of the cutter (2) into the chip formation zone (3) and formation of a new surface (4)
during machining of the rotor shaft (5) after prolonged operation. The metal matrix
contains carbides, sulphides, and intermetallic content (6), which are stress concentrators
and contribute to the formation of cracks (7, 7*), given the tendency for branched cracks to
form smaller chips. The size and distribution of carbides and intermetallic contents affect
the formation of growth (8, 8*—smaller growth). An increase in the build-up between the
cutter and the workpiece increases the surface roughness. During long-term operation, the
metal matrix, carbides, sulfides, and intermetallic contents are hydrogen charging, which is
accompanied by a change in their location in the grains. Hydrogen between the inclusion
and the metal matrix affects the stress field and contributes to the accelerated destruction of
the subsurface layers during machining. If the main frontal angle of the cutter is negative, a
surface nanostructure with a high density of dislocations and residual compressive stresses
is formed during turning [49], and the surface nanostructure blocks the penetration of
hydrogen into the matrix material [50–52].

It was recorded that the amount of cementite in the microstructure of the shaft de-
creased from 87% to 62% over 250 thousand hours of operation, and the proportion of free
ferrite increased from 5% to 20% [22].

It was found that in the degraded material, the content of alloying elements in the
carbide phase increases, and in the solid solution of the metal matrix, the content de-
creases compared to the initial state. The intensification of diffusion processes increases
the concentration of carbide-forming elements: along grain boundaries and in carbides.
In special carbides, an increase in the content of chromium and vanadium was recorded:
1.05–1.65 times, and for molybdenum, 2.22–2.85 times [22].
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(a) (b) 

Figure 5. Scheme of rotor shaft turning: conditionally initial condition (a); after long-term operation
(b). Designations: 1—direction of turning; 2—cutter; 3—chips; 4—machining surface; 5—rotor shaft;
6—carbides, sulfides, and intermetallic content; 7—cracks; 8—growth between the cutter and the
rotor shaft (6*, 7*, 8*—after hydrogen charging).

Microstructure Figure 6a—zone near the rotor shaft bearing (hydrogen
environment—above)

Structure characteristics:
The microstructure is a finely dispersed ferrite–pearlite mixture with a uniform dis-

tribution of phases. Pearlite is presented in the form of small, isotropically arranged
columns/plates, and ferrite is presented in the form of light islands with an almost
uniform distribution.

Micromorphology:
The structure is dense, without a pronounced deformation texture. Fine grains are visi-

ble, which indicates diffusion saturation with hydrogen, but without significant destruction.
Interpretation:
The zone was probably under conditions of moderate hydrogen action, which caused

the dissolution of pearlite columns, but without the formation of cracks. Hydrogen acted
mainly on the grain boundaries, causing deformation relaxation.

Microstructure Figure 6b—zone near the trunnion (hub) (intensive contact
with hydrogen)

Characteristics of the structure:
A significant blurring of the boundaries of the ferrite–pearlite structure is observed,

with a chaotic arrangement of elongated pearlite columns. The pearlite zones are disorga-
nized, and the structure looks more inhomogeneous and elongated in the stress directions.

Micromorphology:
Signs of local deformation are observed, with oriented structures and probable forma-

tion of hydrogen-induced defects (micropores, unstable grain boundaries). This indicates
intensive interaction with hydrogen.

Interpretation:
The microstructure indicates an active hydrogen influence, probable formation of hy-

drogen traps in carbides, and displacement of phase boundaries, presumably a degradation
zone. The trunnion was in contact with hydrogen at high temperatures, which caused
localized plasticity and inhomogeneous relaxation of the phases.



Energies 2025, 18, 4368 8 of 26

 
(a) (b) 

Figure 6. Microstructures of the turbine unit rotor shaft surface 38KhN3MFA after prolonged
operation in contact with hydrogen: near the bearing seal (a) and near the bearing hub (b).

Chips are an identifier of degradation processes in the surface and subsurface layers
of a rotor shaft or other equipment. Figure 7a shows a chip with a microrelief that is typical
of the initial condition, and Figure 7b shows a chip with a different microrelief appearance.
It has a more complex character, which is probably formed as a result of a complex effect of
factors, one of which is the effect of hydrogen.

 
(a) (b) 

Figure 7. Appearance of the chips: conditionally initial state (a) and from the degraded area (b).

Arrows I indicate (Figure 5a) the stepped microrelief of the chips. Arrows II indicate
(Figure 5b) the presence of cracks that could have been formed as a result of the impact
of the hydrogen-containing medium on the rotor shaft metal. The deformed surface has a
roughly petal-like appearance, which may indicate the occurrence of intense deformation
processes in the degraded surface during chip formation under machining conditions.
Figures 8 and 9 show the visualization of the chip surface profile. For the chips (Figure 8a,b)
which were formed from the initial state of the material, most of the surface has a microrelief
in the range of −25–+25 conventional units, i.e., arbitrary height units calibrated within
the profilometry software, and only in the right part of the images, there are those whose
height peaks in the range of +15–+30 conventional units.

For the degraded surface (Figure 9b), there are a greater number of peaks (peak
heights in the range of +25–+50 conventional units) than for the previous case. Also, low
depressions with a depth of up to −50 conventional units are characteristic.

The amount of hydrogen recorded in the chips from the initial state (Figure 10a) is
0.87 ppm, while in the chips from the degraded area, it reaches 7.24 ppm.
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(a) (b) 

Figure 8. Two-dimensional (a) and three-dimensional (b) reconstruction of the chip area presented
in Figure 7a.

(a) (b) 

Figure 9. Two-dimensional (a) and three-dimensional (b) reconstruction of the chip area presented
in Figure 7b.

  
(a) (b) 

Figure 10. Amount of hydrogen in the chips (a,b). Initial conditional state (a). From degradation chips (b).

3.3. Electrochemical Investigation

The analysis of the change in the corrosion potential of steels in different coolants
revealed that it has a similar character. The value of the corrosion current density for
38KhN3MFA steel depends on the nature of the coolant base and increases in the following
sequence: sunflower < rapeseed < oil (petroleum) (Table 1):

For material samples cut from sections of power equipment shafts with different
degrees of degradation and different operating times, the corrosion resistance is 8. . .17%
lower than that of steels in their original state.

To determine the ability of the coolant to protect the surface of machined parts from
corrosion, as well as to determine the difference in electrochemical parameters for chips
formed after their removal from the degraded section of the shaft, electrochemical studies
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of polished samples in coolant and mineral water were performed. The effect of coolant on
the rate of electrode processes is shown in Figure 11.

The nature of the curves for 38KhN3MFA steel (Figure 11) indicates the anodic nature
of electrode processes. A stably passive region in the anode section of the polarization
curves is observed for 38KhN3MFA only in the LCLr. This indicates the formation of a
continuous corrosion-resistant film on this steel in the indicated media.

Table 1. Electrochemical parameters of steel.

Environment icor,·104

mA/cm2
Ecor,
mV

icor,·104

mA/cm2
Ecor,
mV

icor,·104

mA/cm2
Ecor,
mV

icor,·104

mA/cm2
Ecor,
mV

1 2 3 4 5 6 7 8 9

LCLs 1.70 (100%) −175 1.83 (8.12%) −174 1.88 (10.61%) −172 1.96
(15.44%) −169

LCLr 2.14 (100%) −179 2.31 (8.27%) −178 2.37 (10.94%) −176 2.47
(15.77%) −173

LCLp 6.03 (100%) −187 6.59 (9.35%) −186 6.71 (11.33%) −184 7.01
(16.39%) −181

Water 16.02 (100%) −325 17.62 (10.0%) −324 18.03 (12.57%) −322 18.78
(17.28%) −319

1, 2, 3—output state; 4, 5—200 thousand hours of exploitation; 6, 7—225 thousand hours of exploitation; 8, 9—250
thousand hours of exploitation.

Figure 11. Polarization curves of the 38KhN3MFA steel obtained on the samples (conditional initial
state): 1—water, 2—LCLr, 3—LCLs, 4—LCLp, 5—water (after operation, 250 thousand hours).
Conditionally initial state (I) and from the degraded area—operational condition (II).

Figure 12 shows the regression curves of the change in the icor corrosion current
density obtained on samples exposed to different operating times in the media.

Regression analysis was performed (Table 2); a,b—coefficients; p-value for coefficients
(especially ln(x)). If p < 0.05, this is considered statistically significant. CI denotes the
confidence interval limits.

Regression analysis of the corrosion current density over time shows a strong loga-
rithmic dependence (R2 > 0.81 for all environments), with statistically significant slopes
(p < 0.05). The increase in ln(iorp) is most pronounced in distilled water, while the effect is
minimal in LCLs. Confidence intervals for the slope coefficients confirm the reliability of
these trends.
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Table 2. Regression analysis results.

Environment a (Slope) b (Intercept) R2 p-Value CI (a)

LCLs 0.0752 1.8222 0.8886 0.012 (0.03–0.12)

LCLr 0.0923 2.3 0.8817 0.015 (0.04–0.14)

LCLp 0.2368 6.5562 0.8105 0.030 (0.09–0.39)

Water 0.6654 17.543 0.8655 0.010 (0.32–1.01)

Figure 12. Regression curves of changes in the corrosion current density (icor) obtained on the
samples exposed during different operation times in the following media: 1—water, 2—LCLr,
3—LCLs, 4—LCLp.

Roughness values for the samples (Rz) (after machining): (conditionally initial condi-
tion/degraded after 200 thousand hours of operation): 37.08/57.47 (dry cutting); 5.01/7.11
(with water); 6.36/8.77 Rzp; 4.43/5.71 Rzs.

Our research shows that the concentration of hydrogen in the coolant is higher in chips
made on an oil basis (petroleum) (7.86 ppm), and lower for chips made on a sunflower oil
basis (7.22 ppm). Therefore, it is possible that the destructive effect of hydrogen on coolant
under such technological conditions will be lower.

During machining, an increase in the amount of hydrogen in the chips formed both
during machining [34] and from degraded areas of the rotor shaft was recorded. It was
recorded during the processing of the amount of hydrogen (6.84. . .7.12 ppm), during the
processing of the areas on the border with the degraded ones, and during processing of
the most damaged areas (7.12. . .7.94 ppm). In the undegraded areas of the rotor shaft, the
recorded hydrogen concentration ranged from 2.1 to 4.4 ppm. The surface quality of steel
samples when honed with LCLs improves almost 1.5 times compared to LCLp and shows
the prospects of using vegetable oil for LCLS. It should also be noted that an increase in
the maximum recorded hydrogen concentration in the chips coincides with an increase
in roughness. This may indicate that there is a range within which the effect of hydrogen
from the LCL, together with the gradual hydrogen charging of the structural components
of steel, provides optimal values of roughness during machining of the turbine generator
rotor shaft. Increasing the degree of dispersion (including during degradation processes)
in the studied areas led to an increase in the concentration of hydrogen, and, accordingly,
to a change in the intensity and nature of destruction during machining, which is the main
procedure affected by crack initiation and electric erosion rotor area repair technology.
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4. Discussion
4.1. Common Provisions

Hydrogen can significantly affect the properties of steel parts that are exposed to
hydrogen-containing environments for a long time [53–67]. Therefore, to study this prob-
lem, we can refer to many studies that may be even indirectly related.

In [57], to study the changes in the hydrogen embrittlement (HE) of CLAM steel during
thermal aging, samples were kept at 550 ◦C and 600 ◦C for up to 5000 h. The evolution
of the microstructure was studied: sub granules, M23C6 carbides, MX carbonitrides, and
Laves phases. It has been found that the resistance to VC first increases and then decreases
with increasing aging duration. The mechanisms of such changes are explained through
the orientational bonds between the secretions and the matrix.

The influence of microstructure and reversed austenite (RA) on hydrogen embrit-
tlement (HE) was studied in NiCrMoV/Nb high-strength steel subjected to three heat
treatments. Quenched and tempered (QT) steel showed the best HE resistance due to low
hydrogen diffusivity and high apparent hydrogen concentration. TDS analysis revealed
RA has a trapping energy of 32.5 kJ/mol. However, the QLT steel, with more RA, showed
higher HE susceptibility, indicating RA reduces HE resistance [59].

Constant load tests showed no cracking at hydrogen pressures up to 100 bar and
temperatures of 25 ◦C and 80 ◦C. Carbon steels absorbed up to 0.54 ppm hydrogen—below
the embrittlement threshold. Austenitic stainless steels absorbed more hydrogen but were
more resistant. In H2S-saturated solutions, hydrogen uptake increased tenfold, leading to
fractures in high-strength carbon steels, Super 13Cr, and Duplex 2205 [60].

This study [61] examines hydrogen transport and embrittlement resistance in dual-
phase (DP) ferritic–martensitic low alloy steels (LASs). Ferritic–pearlitic and fully marten-
sitic steels were used for comparison. Tempering reduced hardness and promoted carbide
formation, increasing hydrogen diffusivity and reducing trapping—mainly due to dislo-
cation annihilation. A higher martensite fraction lowered diffusion in both as-quenched
and tempered states. Steels with ~50% tempered martensite showed the best HE resistance,
highlighting design strategies for hydrogen-related applications.

When steels, especially chromium steels (e.g., 9–12% Cr), are exposed to temperatures
in the range of approximately 500–650 ◦C for a long time, carbides of the M23C6 type (where
M is mainly Cr, Mo, Fe) precipitate mainly at grain boundaries. This phenomenon is called
sensitization and leads to the formation of zones of reduced chromium content along grain
boundaries, which reduces corrosion resistance and promotes intergranular corrosion. In
addition, coagulation and carbide growth reduce the impact strength and promote brittle
fracture over time [68].

The authors of [69] describe the kinetics of precipitation and dissolution of M23C6

carbides in low-alloy steel used in the energy sector. It has been shown [70] that short-term
holding at 790 ◦C promotes precipitation of carbides at grain boundaries, which affects
the mechanical properties of steel. It has been noted [71] that an increase in the amount of
M23C6 carbides at grain boundaries reduces the impact strength of steel during aging. The
correlation between the nature of grain boundaries and carbide precipitation, as well as
their effect on mechanical properties, was studied [72].

Grain boundary engineering (GBE) was applied to the GH3535 alloy (Ni-16Mo-7Cr-
4Fe), which contains chains of primary molybdenum carbides that complicate uniform
grain refinement. This study examined how primary carbide distribution affects grain
boundary network (GBN) evolution. Cross-rolling produced finer, more dispersed carbides,
promoting multiple twinning and a higher fraction of Σ3n grain boundaries. In contrast,
aligned carbide strings led to particle-stimulated nucleation (PSN) and increased general
high-angle boundaries, while simultaneously hindering grain boundary migration and
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limiting twin-rich grain cluster formation. As a result, Σ3n boundary enhancement was
suppressed [73].

Growth and coagulation of carbides at grain boundaries reduce the impact strength
and promote brittle fracture. Sensitization leads to intergranular corrosion, especially in
aggressive environments.

To reduce or prevent carbide precipitation, stabilized steels (e.g., 321 or 347) with Ti
or Nb, a lower carbon content (e.g., 304L), and heat treatment (solution annealing) can
be used [74].

When steel cools after melting, heat treatment, or elevated temperatures, sulfur and
manganese tend to diffuse to the grain boundaries, where they form MnS inclusions. These
inclusions can affect the mechanical properties of steel, in particular, its corrosion resistance
and ductility [75–79].

The authors of [75] describe the various stages of MnS precipitation in high-carbon
steel, including formation at grain boundaries and interaction with oxide inclusions. Arti-
cle [76] analyzes the formation of MnS inclusions during heat treatment and their impact
on the mechanical properties of steel. The authors of [77] examine the diffusion and pre-
cipitation of MnS at the interface between Mn-Al-Si oxides and steel. The authors of [78]
describe the role of MnS inclusions in intergranular corrosion and depassivation of sensi-
tized stainless steel. The authors of [78] describe the role of MnS inclusions in intergranular
corrosion and depassivation of sensitized stainless steel.

The authors of [79] investigate how oxygen content influences MnS formation during
cooling and heat treatment. Increased oxygen promotes the transformation of MnS mor-
phology from Type II to Type I by facilitating oxide formation during early solidification,
shifting the reaction from eutectic to monotectic. Higher oxygen levels reduce nucleation
energy, enhancing heterogeneous nucleation. During slow cooling and heat treatment, the
elevated oxygen content accelerates sulfide coarsening and significantly increases inclusion
size, consistent with Ostwald ripening theory.

Reducing the sulfur and manganese content, as well as controlling thermal conditions,
can help minimize the formation of harmful MnS inclusions [80]. For example, [81] studied
the effect of tellurium (Te) treatment on the morphology of manganese sulfide (MnS)
inclusions in steels with a high and low sulfur content. This study showed that the addition
of tellurium changes the size and shape of MnS inclusions, promoting the formation
of spherical or wrapped inclusions, which improves the machinability and mechanical
properties of steel. The optimum Te/S ratio is approximately 0.5.

An increase in sulfur content leads to an increase in the number of filamentous MnS
inclusions, which negatively affects the properties of steel. At a low sulfur content, most
MnS inclusions are spherical or spindle-shaped, which is less harmful to mechanical
properties [82].

The following technological operations can be used to restore the surface of the rotor shaft:
Surfacing (restorative build-up):
Performed using arc welding with preheat temperature of 250–300 ◦C;
Interpass temperature controlled within <350 ◦C;
Final layer grinding followed by honing to achieve Rz < 5.0 µm on reconditioned surfaces.
Post-weld Heat Treatment (PWHT):
Carried out at 620 ± 10 ◦C for 8 h, followed by controlled cooling in furnace atmosphere;
Aimed at reducing residual stresses and restoring toughness in 38KhN3MFA material.
Machining operations:
Honing and finishing using LCLs based on sunflower oil;
Feed rate: 0.05–0.1 mm/rev, cutting speed: 60–90 m/min, depth of cut: 0.2–0.3 mm;
LCL application pressure: 0.2 MPa, temperature: 25 ± 2 ◦C.
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The repaired rotor sections were subjected to mechanical validation procedures, in-
cluding Brinell hardness measurements (achieving 275–280 HB), ultrasonic non-destructive
testing, and surface roughness control (Rz < 5.0 µm). The absence of defects and stable
post-repair performance during more than 25,000 h of operation confirmed the effectiveness
of the applied repair technologies.

4.2. The Main Reasons for the Movement of Carbides to the Grain Boundaries
4.2.1. Increased Diffusion Along Grain Boundaries

Grain boundaries are zones with high energy, which promotes faster diffusion of
atoms, especially when exposed to high temperatures for a long time. This leads to the
re-deposition of carbides, such as M23C6, at grain boundaries [83–87].

4.2.2. Dissolution of Intra-Grain Carbides

During prolonged thermal exposure, small carbides inside the grains can dissolve,
and carbon and alloying element atoms migrate to the grain boundaries, where new, larger
carbides are formed [85,88–91].

4.2.3. Redeposition of Carbides at Grain Boundaries

Grain boundaries serve as favorable places for carbide nucleation due to the pres-
ence of crystal lattice defects, which reduces the energy barrier for the formation of
new phases [92–97].

4.2.4. Growth and Coagulation of Carbides

Over time, carbides at grain boundaries can grow and combine to form larger particles,
which changes the mechanical properties of steel; in particular, it reduces its ductility and
impact strength [93,98–104].

4.2.5. The Effect of Thermal Aging

Prolonged thermal aging promotes the formation of carbides at grain boundaries,
which can lead to a decrease in corrosion resistance and mechanical properties of the
material [99–103,105–110].

4.3. Influence of Alloying Elements and Microstructure Parameters on Diffusion and
Hydrogen Embrittlement

Attention should also be paid to the effect of alloying elements and microstructure
parameters on the properties of steels after their hydrogen saturation [111–118].

The effect of alloying elements on hydrogen brittleness and diffusion is studied
in [111–114].

The authors of [111] investigated the effect of alloying elements (Cr, Mo, Mn, Ni) on
hydrogen diffusion and embrittlement in martensitic steels. It was found that Cr and Mo
reduce the hydrogen diffusion coefficient but can increase the tendency to brittleness due
to the accumulation of hydrogen at grain boundaries. A comparison was made [112] of the
effect of hydrogen saturation on the mechanical properties of various alloys, including the
austenitic stainless steel AISI 321. It was found that some alloys demonstrate high resistance
to hydrogen embrittlement. The authors of [113] analyzed the effect of microstructure and
alloying on the resistance of steels to hydrogen embrittlement. In particular, the role of
bainite structure and chromium content is studied. The authors of [114] investigated the
effect of Ni, Cr, and Mo on hydrogen diffusion and embrittlement in martensitic steels. It
was shown that these elements can reduce the hydrogen diffusion coefficient but at the same
time increase the hydrogen concentration on the surface, which contributes to brittleness.
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The authors of [115] investigated the effect of nanoscale NbC precipitates (~10 nm)
on the hydrogen embrittlement of martensitic steel. It was found that NbC plays a dual
role: on the one hand, it acts as a trap for hydrogen, reducing its accumulation in critical
zones, and on the other hand, it can negatively affect the texture and resistance to crack
propagation. The authors of [116] found that nanoscale NbC particles effectively trap hy-
drogen, reducing its diffusion and increasing resistance to hydrogen embrittlement in steels.
In [117], it was found that hydrogen reduces the binding energy at the boundaries, which
contributes to intergranular fracture. Crack formation along strain twins in TWIP steels is
also observed. The authors of [118] investigated the effect of hydrogen saturation on the
mechanical properties of medium manganese steels. In particular, they analyzed how the
microstructure and manganese content affect the tendency to hydrogen embrittlement. The
results show that optimizing the microstructure can improve the resistance to hydrogen ex-
posure, reducing the risk of brittle fracture. The authors of [119] found that the main factor
affecting the susceptibility to hydrogen embrittlement is the strength of the steel. Among
the studied microstructures, fine-grained pearlite has the lowest tendency to hydrogen
embrittlement, followed by bainite, and tempered martensite shows the highest sensitivity.

4.4. Application of Screening Analyses and Computer Vision Methods

The prevention of catastrophic destruction of components and structural parts can be
achieved through the use of screening analyses, which include the analysis of separated
fragments of particles and chips formed during repair work, as well as the analysis of wear
particles in the case of tribomechanical components [25,120–142].

To identify detached particles, computer vision methods can be used, for which we
already have some developments [143–157].

Also, studies of such scientific and technical problems related to the impact of techno-
logical environments, hydrogen, material destruction, and other factors are considered in a
different context in the following publications [158–194].

This table (Table 3) is based on our experimental results and the previous literature. It
provides a structured view of the advantages and limitations of each method in the context
of rotor degradation monitoring.

Table 3. Comparative effectiveness of diagnostic methods used for hydrogen charging assessment in
38KhN3MFA rotor shafts.

Method Sensitivity to
Early Damage Hydrogen Detection Spatial Resolution Application Remarks

Metallography (SEM/OM) High Indirect ~1 µm Laboratory Reveals microcracks, carbide
redistribution, inclusions

Fractography of chips Medium Indirect ~1 µm Field and lab Useful for real-time
wear/degradation trends

Hydrogen content in chips High Direct (ppm-level) Local bulk Lab Requires sample prep; correlates
with structural degradation

Electrochemical testing Medium Indirect Macro (~mm) Lab Good for coolant evaluation and
general corrosion resistance

Magnetic/eddy current tests Medium No ~0.1–1 mm Field Detects discontinuities; limited for
internal damage

Computer vision (chip wear) Medium–High No Image
resolution-based Field and lab Promising for automation and

continuous monitoring

It should also be noted that the elastic deformations of the rotor and its supporting
structures significantly affect the dynamic loads acting on the rotor shaft and, consequently,
the degradation processes. This issue is discussed, in particular, in publication [195].

Considering that the bearings mounted on the rotor shaft play a crucial role in ensuring
the reliable operation of power equipment [135,195], this must be taken into account in
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future design decisions, especially in light of the complex changes occurring during long-
term operation.

Similar approaches to force distribution and control are used in other dynamic systems,
such as vehicle dynamics during curve following, where optimal longitudinal motion relies
on precise traction/braking balance [196].

5. Conclusions
Hydrogen saturation of steel during long-term operation can significantly change

the properties of the metal matrix, carbides, sulphides, and intermetallic content, mainly
through hydrogen embrittlement mechanisms, changes in electronic properties, and the
formation of localized defects. These changes can have a significant impact on the over-
all mechanical properties of steel, including its hardness, strength, and ductility, which
affects machining.

This paper presents a scheme of redistribution of carbides in structural components in
the initial state and after long-term operation. For these states, the schemes of rotor shaft
turning are visualized, taking in to account some features of the microstructure. It is noted
that during long-term operation, a number of alloy properties are affected by changes in the
parameters of structural components caused by the action of hydrogen-containing media
under these conditions.

It was found that material samples cut from differently degraded areas of power
equipment and with different operating times are characterized by a corrosion resistance
that is 8. . .17% lower than that of steels in their original state.

During machining (repair technologies), an increase in the hydrogen content in the
chips was recorded: both in those formed directly during machining and in those released
from the degraded areas of the rotor shaft. In areas on the border between intact and
degraded zones, the hydrogen concentration was 6.84–7.12 ppm, and in the most damaged
areas it was 7.12–7.94 ppm. The surface quality of the steel samples when honed using
LCLs improved by almost 1.5 times compared to LCLp, which indicates the prospects of
using vegetable oil as an LCL. In the undegraded areas of the rotor shaft, the recorded
hydrogen concentration ranged from 2.1 to 4.4 ppm. In addition, it was found that the
increase in the maximum hydrogen concentration in the chips coincides with an increase in
surface roughness. This may indicate the existence of a range within which the interaction
of hydrogen with LCL and the gradual moistening of the structural components of steel
provides optimal roughness values during machining of the turbogenerator rotor shaft.
The increase in the degree of dispersion, in particular due to degradation processes in the
studied areas, caused an increase in the hydrogen concentration. This, in turn, led to a
change in the intensity and nature of material destruction during machining.

Based on the results of the experimental data, regression equations and approximation
reliability R2 values were obtained to describe the change in the electrochemical parameters
of 38KhN3MoA steel samples after 200, 225, 250, and up to 350 thousand hours of operation.

Hydrogen has a significant effect on the mechanical properties of steels, contributing
to hydrogen embrittlement, especially under prolonged thermal loading.

It was found that the hydrogen embrittlement (HEB) in steels such as CLAM changes
with the increase in the aging duration, in particular due to the precipitation of carbides
(M23C6, MX), the formation of Laves phases, and orientational bonds with the matrix.

Thermal aging at 550–650 ◦C leads to sensitization and localized depletion of
chromium at grain boundaries, which reduces corrosion resistance and promotes
intergranular corrosion.

Some alloying elements (Cr, Mo, Ni) reduce the diffusion of hydrogen, but can disrupt
its localization at grain boundaries, increasing the risk of brittle fracture.
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Precipitation of carbides and MnS inclusions at grain boundaries significantly changes
the impact strength and corrosion resistance of steels.

Precipitation of M23C6 carbides and their coagulation leads to a decrease in ductility
and promotes brittle fracture.

MnS inclusions, in particular those formed during cooling, affect intercrystallite ti-
tanium corrosion and mechanical properties; their morphology and distribution can be
controlled by controlling sulfur, manganese, and tellurium.

The use of stabilized steels (with Ti or Nb), steel with a reduced carbon content (304L),
and heat treatment (solution annealing) can reduce the risk of degradation.

Identification and monitoring of wear processes using computer vision and particle
analysis is an effective tool for preventing catastrophic damage.

The analysis of separated wear particles, including samples obtained during mainte-
nance, allows you to assess the current condition of materials.

Computer vision and neural network methods are actively used to classify wear
particles, which opens up prospects for automated condition diagnostics.

The development and implementation of screening methods (based on chip mor-
phology, wear particles) allows for early detection of damage, which is critical for
structural safety.

This study highlights the significance of hydrogen-induced microstructural changes
in 38KhN3MFA steel used in turbine rotor shafts, particularly under long-term operational
conditions in hydrogen-cooled environments. The presence and distribution of complex
carbides, intermetallic phases, and microstructural defects were shown to directly affect
hydrogen accumulation and the initiation of degradation processes. Based on these findings,
the following future research directions and engineering recommendations are proposed:

− Regular chip analysis should be implemented as part of turbine maintenance protocols
to monitor early-stage degradation and material instability.

− Computer vision integration is recommended for the automated classification and
morphometric evaluation of wear particles and cutting chips, enhancing diagnostic
accuracy and consistency.

− Machine learning algorithms should be developed and trained for intelligent classi-
fication of wear debris, utilizing shape, texture, and fractographic features as input
parameters for failure prediction models.

− In situ hydrogen detection techniques, including sensor-based or spectroscopic meth-
ods, should be investigated to enable real-time tracking of hydrogen transport and
accumulation in rotor steel microstructures.

− Comparative studies on alternative steel grades, such as Cr-Mo or Ni-based alloys,
are needed to identify materials with superior resistance to hydrogen embrittlement
under similar thermal and operational loads.

− Microstructural evolution studies should focus on the role of secondary phases
(e.g., σ-phase, Laves phase, intermetallics like Ni3Mo, Fe2Mo) in promoting localized
embrittlement, especially at grain boundaries and carbide–matrix interfaces.

− Finite element simulations and microstructure-based modeling can support the pre-
diction of stress concentration zones, trap saturation effects, and critical hydrogen
levels leading to mechanical failure.

These research directions will contribute to the development of advanced diagnos-
tic tools and more hydrogen-resistant materials for critical rotating equipment in the
energy sector.
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Abbreviations

TGV turbogenerator with hydrogen cooling
TA Turbo aggregate (turbine + turbogenerator)
TG hydrogen-cooling turbogenerator
ppm parts per million
Ecor corrosion potential
Icor corrosion current density
LCL lubricating cooling liquid
LCLs lubricating cooling liquid based on sunflower oils
LCLr lubricating cooling liquid based on rapeseed oils
LCLp lubricating cooling liquid based on petroleum oil
pH indicator of the acidity or alkalinity of a solution
◦C degrees Celsius—Celsius temperature
Rz roughness values (dry cutting)
Rzp roughness values (after LCLp cutting)
Rzs roughness values (after LCLs cutting)
CH hydrogen concentration
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