NANOMATERIALS

Organized nanostructures and nano-objects: fabrication, characterization and applications

The symposium covers all the scientific and technological aspects related to the synthesis, the physical/chemical characterizations, the material properties of semiconductor or metallic nanodots and nanowires, with special emphasis on the multiscale organization and spontaneous auto-organization and directed self-assembly of ordered structures, in view of their integration in functional devices.

Scope:

Due to their appealing size dependent properties, semiconductor and metallic nano-objects (nanocrystals, nanowires) have been predicted to be used as technological boost in various fields including nano- electronics, optoelectronics, photonics, magnetism, phononics, plasmonics, advanced sensing and photovoltaics. The capability to control size, shape, interface, composition, and doping of these nano- objects is crucial to finely tailor their properties. Nevertheless, the implementation of these elemental building blocks into functional devices at nano-scale requires precise control of the organization of the nano- objects in terms of density and relative positioning within well-organized structures, both in plane and in depth. The feasibility to fabricate ordered arrays of nano-objects and to precisely organize the nano-objects on appropriate substrates or inside various matrices is the key issue to support the technological development of new device concepts with predictable characteristics based on these novel nano-materials. Following very successful symposia organized in 2012, 2014 and 2016, this symposium intends to draw on previous experience. In particular, a special focus on multiscale fabrication, directed organization and auto-organization is requested by the scientific community working in the field of nanotechnology. The symposium will provide the opportunity to present insights on advanced nano-structures and nano-device architectures at different stages of development. The symposium is open to all the experimental and theoretical results on organized nano-structures, aiming to control the main parameters of the nano-objects in relation with their tunable properties and functionalities. Thus, the symposium is conceived as a platform that gathers researchers coming from academia and industry and promotes interactions among scientists and engineers working on all the aspects of semiconductor and metallic nano-structures, ranging from fundamental physics and material science issues up to the technological implementation toward the final application in functional devices.

Hot topics to be covered by the symposium:

- · Synthesis of nano-structures: Top-down and Bottom-up processes;
- · Nano-structures on surface and in volume;
- Doping issues in nano-structures;
- Self and induced organization of metal and semiconducting nano-structures;
- · Advanced methodology to control synthesis, positioning, shape, size in nano-structures;
- · Organic-inorganic hybrid materials;
- · Semiconducting nano-structures for novel logic or memory architectures;
- Light emission and optical gain in semiconductor nano-structures;
- Metal and semiconducting nano-structures for energy applications: photovoltaic and thermoelectric;
- Nano-structures for advanced sensing and plasmonic applications.

List of confirmed invited speakers:

- Thomas Zentgraf (University of Paderborn, Germany), "Ultrathin metalenses for imaging with high harmonic generation processes"
- Wilfred G. van der Wiel (University of Twente, The Netherlands), "Evolving functionality in disordered nanomaterial networks"
- Kevin Yager (Brookhaven National Laboratory, USA), "Formation of non-native morphologies in block-copolymer self-assembly"
- André Beyer (Bielefeld University, Germany), "Helium Ion Microscopy: Imaging and Milling with Nanometer Precision"
- Chinedum Osuji (Yale University, USA), "Single crystals and bespoke textures in self-assembled soft materials"
- Jürgen Brugger (EPFL, Switzerland), "Ultra-fast Nano-Prototyping Using Thermal Scanning Probe Lithography"
- Bartlomej Graczykowski (Adam Mickiewicz University, Poland), "Heat and Hypersound Transport in Phononic Crystals Membranes"
- Ewold Verhagen (AMOLF, The Netherlands), "Nanophotonic optomechanics: from quantum measurement to topological phononics"
- Fabien Alibart (CNRS, France), "Dynamical neuromorphic computing with electropolymerized organic electro chemical transistors"
- Jeffrey Colin Mccallum (University of Melbourne, Australia), "Si-based nanoscale device structures for quantum technology applications formed using ion implantation"

Μ

 Ilja Gunkel (University of Fribourg, Switzerland) "Fabrication of 3D Optical Metamaterials by Controlled Polymer Self-Assembly"

START AT	SUBJECT	View All	NUM.	ADD
08:50	Introduction: G. Seguini, G. Ben-Assayag, P. W. Navarro-Urrios	Majewski, D.		
	Colloidal Based Nanostructures : D. N	Navarro-Urrios		
09:00	Fabrication of a Portable Colloidal Array		M.1.1	☆
09:15	Simulation of Colloidal Nanomask Self-Assembl Processes	у	M.1.2	☆
09:30	Controlling the long-range order of self-assembl nanostructures for surface-enhanced Raman spectroscopy.	ed	M.1.3	☆
09:45	Photonic crystal properties of Si and SiO2 nano arrays fabricated by nanosphere lithography and	pillar d MACE	M.1.4	☆
10:00	With directed self-arrangement of DNA origami area quantum dot arrays	to large-	M.1.5	☆
10:15	Low threshold vertical cavity surface emitting La colloidal quantum dots under CW optical pumpin	nsers from ng	М.1.6	☆
10:30	Coffee Break			
	Nanomaterials and Self-Organization	: M. Perego		
11:00	Evolving functionality in disordered nanomateria networks	ıl	M.2.1	☆
11:30	Kinetics and mechanism of ordered interfacial s assembly of typical energetic nanocrystals	elf-	М.2.2	☆
12:00	Eco-friendly all water-based solution process for Ag nano-mesh transparent electrodes	r robust	М.2.4	☆
12:15	Lunch Break			
	Directed Self-Assembly : P. W. Majew	/ski		
14:00	Single crystals and bespoke textures in self-ass soft materials	embled	M.3.1	☆
14:30	Enhanced lateral ordering in lamellar BCP/homo	opolymer	M.3.2	☆

START AT	SUBJECT	View All	NUM.	ADD
14:45	Laser Directed Macroscopic Self-assembly of Bl Copolymer Thin Films on Silicon	ock	M.3.3	☆
15:00	Directing the self-assembly of gyroid terpolymers films using patterned substrates	s in thin	M.3.4	☆
15:15	Al2O3 pillars obtained by sequential infiltration s in directed self assembled block copolymers	ynthesis	M.3.5	☆
15:30	Coffee Break			
	Nanofabrication and Applications : W.	G. van der W	ïel	
16:00	Ultra-fast Nano-Prototyping Using Thermal Scar Probe Lithography	ning	M.4.1	☆
16:30	Supramolecular structures built by scanning tuni microscopy	nelling	M.4.2	☆
16:45	Combining Nanoparticle and Silica Gels in a New	w Manner	M.4.3	☆
17:00	Highly-Sensitive Amperometric Biosensor using Polyvinylpyrrolidone/Chitosan/Reduced Grapher Electrospun Nanofibers	ne Oxide	M.4.5	☆

START AT	SUBJECT	View All	NUM.	ADD
	Nanostructures and Nanoelectronic	J. Brugger		
09:00	Size controlled formation of Ge nanocrystals in amorphous TaZrOx dielectric films		M.5.1	☆
09:15	Combination of Top-down with Bottom-up proce Manufacture Single Electron Transistors Opera	esses to ting at RT	M.5.2	☆
09:30	Self-Aligned Nano Fabrication of Interconnects Gas Sensors by Gas Phase Electrodeposition	, Vias and	M.5.3	☆
09:45	Down-converter nanostructured thin films for in Si-based Solar Cells	dustrial	M.5.4	☆
10:00	Phosphorus- or Boron-Doping of Silicon Nanoc Absence of Free Carriers	rystals:	M.5.5	☆
10:20	Coffee Break			

Nanoelectronic and Doping : G. Ben-Assayag

Organized nanostructures and nano-objects: fabrication, characterization and applications | EMRS

START AT	SUBJECT	View	All	NUM.	ADD
11:00	Si-based nanoscale device structures for quantur technology applications formed using ion implantations	n ation		M.6.1	☆
11:30	Controlling shallow- and deep-level dopants in sil nanowires via non-equilibrium processing	icon		M.6.2	☆
11:45	Integration of technological steps into a CMOS- compatible process toward the realization of Verti Gate-All-Around GaAs transi	ical		M.6.3	☆
12:00	Phosphorus-end capped polymers for n-type dop silicon	ing of		M.6.4	☆
12:20	Lunch Break				
	Top-Down and Bottom-Up Nanofabrica	ation	: C. Osuj	i	
14:00	Formation of non-native morphologies in block- copolymer self-assembly			M.7.1	☆
14:30	Helium Ion Microscopy: Imaging and Milling with Nanometer Precision			M.7.2	☆
15:00	Dewetting-induced formation of hierarchically ord structures in BCP thin films	ered		M.7.3	☆
15:15	Hierarchical nanopore and nanoring arrays by se assembly techniques	lf-		M.7.4	☆
15:30	Coffee Break				
	Nanoparticles and Nanowires : F. Ferr	arese	e Lupi		
16:00	Metallic nanowires: template synthesis and invest of emission and magnetic properties	tigatio	n	M.8.1	☆
16:15	Epitaxial Growth of Silicon Nanowires on Native S Oxide by Aluminum/Gold-catalyzed Vapor-Liquid- Synthesis	Silicon -Solid		M.8.2	☆
16:30	Metal catalyst-free nucleation of silicon nanowires	S		M.8.3	☆
16:45	Dopant effect on thermal stability of ferrite nanopa	articles	5	M.8.4	☆
17:00	Ordered magnetic MnAs nanocrystals embedded wurtzite GaAs nanowire shells	l in		M.8.5	☆
17:15	Cation exchange on different nanosized iron oxid fundamental role of crystal structure	es: the	9	M.8.6	☆

START AT	SUBJECT	View All	NUM.	ADD
	Poster Session : G. Seguini, G. Ben- D. Navarro-Urrios	Assayag, P. W	. Majews	ski,
17:30	Synthesis and characterization of yttrium oxide nanocomposite	based	M.P.1	☆
17:30	Possibility of Electric Field Exfoliation of Piezoe Two Dimensional Materials	lectric	M.P.2	☆
17:30	Self-oil cleaning on nanostructured hygroscopic	e fabrics	M.P.3	☆
17:30	Hydrothermal Synthesis of brookite TiO2 nanop from Mg2TiO4	bowder	M.P.5	☆
17:30	Designing SERS-Active Microgels with Molecul Selectivity and High Signal Reproducibility	ar	M.P.6	☆
17:30	Optical characterization of vanadium oxide thin	films	M.P.7	☆
17:30	Electromigration in aluminum-copper combinate film alloys	orial thin	M.P.8	☆
17:30	Theoretical optimisation of radiative cooling dev using opal and inverse-opal structures	vices	M.P.9	☆
17:30	Amplified Circularly Polarized Phosphorescenc Co-Assemblies of Platinum(II) Complexes	e from	M.P.10	☆
17:30	The electrical exploding properties of multilayer composites with controlled bilayer thickness	ed Cu/Ni	M.P.11	☆
17:30	Design, Synthesis, and Characterization of Cyclometalated Platinum(II) Complexes Having Tetradentate Ligands		M.P.12	쇼
17:30	Optimization of Charge Transfer in ZnO Semico based Solid-State Dye Sensitized Solar Cells	onductor	M.P.13	☆
17:30	Effect of Compliance Current During Switch Op on the Characteristics of Resistive Switching in films	eration NbOx	M.P.14	슙
17:30	The synthesis of Si NWs via a Route Based on Electroless Etching Technique and Polysytrene sphere Lithography	Nano-	M.P.15	☆
17:30	Formation and characterization of Si-QDs in an Si/SiNx and Si/SiO2 multilayers: comparative si	nealed tudy	M.P.16	☆

START AT	SUBJECT	View All	NUM.	ADD
17:30	Metalorganic Chemical Vapor Deposition of Rai Sulfides	re-Earth	M.P.17	☆
17:30	Multilayered Aligned Block Copolymers as Tem Nanowire-Based Sensors	plates for	M.P.18	公
17:30	Block Copolymers and Liquid Crystals : Toward Functional Nanomaterials	s Hybrid	M.P.19	☆
17:30	Template synthesis of heterostructural nanowire	es Cu/Ni	M.P.20	☆
17:30	Template synthesis of different metal nanowires applying of magnetic field	s with	M.P.21	☆
17:30	FABRICATION OF NANOSIZE FILMS ON THE OF SCUTTERUDITE CoSb3 FOR THERMOEL DEVICES	BASE ECTRIC	M.P.22	☆
17:30	Aligned Block Copolymer Heterostructures as F Templates for Sensing Applications	Functional	M.P.23	☆
17:30	Production of a source of electromagnetic radia thz range based on the array of nanowires	tion of	M.P.24	☆
17:30	Modelling of thermoelectric properties of noble nanoclustered materials	d-metallic	M.P.25	☆
17:30	Nanostructured ternary compound (HgCdTe) wi oxide (Ag2O) inclusions produced by ion implar	ith metal- ntation	M.P.26	☆
17:30	Investigation of modes and their interactions in plasmonic arrays by ellipsometry.	ordered	M.P.27	☆
17:30	Self-assembled ordered phthalocyanines on gra with applications in organic electronics	aphite	M.P.28	☆

START AT	SUBJECT	View All	NUM.	ADD
17:30	Fabrication and electrical characterization of sin multi-walled carbon nanotubes composites	ngle-and	M.P.29	☆
	Authors : Ivan Karbovnyk (1), Dmytro Chalyy (2 Lykashevych (2), Ihor Olenych (1), Halyna Klyr Affiliations : (1) Ivan Franko National University Tarnavskogo Str., Lviv, 79017, Ukraine (2) Lviv of Life Safety, 35 Kleparivska Str., Lviv, 79000, Polytechnic National University, 12 Bandera St Ukraine	2), Dmytro n (3) r of Lviv, 107 State University Ukraine (3) Lviv r., Lviv, 79013		
	Resume : The aim of this work is fabrication of polymer composites reinforced with single-wall walled carbon nanotubes and their electrical in the temperature range of 50-200 K. Hybrid com were prepared starting from 1% water suspens ethyldioxitiophen from Sigma Aldrich (USA) state surface active anion substance (polystyrene surface active another surface (SWCNTs) with average diated and lengths within the range of 5 to 30 µm and multiwalled carbon nanotubes (95 wt%) with average diated is and lengths within 10-20 µm (MWCNTs). Both SWC MWNTs were supplied by US Research Nanon Electrical tests were carried out exploiting E7-2 capable of measuring impedances in the range Ohms using 1 V excitation signal from 40 mV to frequencies ranging from 25 Hz up to 1 MHz. T experiments were performed utilizing custom c equipped with a DE-202A closed cycle cryocod Research Systems). Temperature control funct performed by Cryocon 32 (Cryogenic Control S temperature regulator. It is established that com with multi-walled nanotubes loading show lowe compared to their single-walled counterpart.	PEDOT-PSS ed and multi- vestigation on aposite films ion of poly-3,4,- bilized with lifonic acid). Two a single-walled meter of 1 nm purified verage outside 10 nm and CNTs and haterials. 10 RLC Meter of 10?5 to 109 to 1 V at emperature ryostat oler (Advanced ions were systems Inc.) nposite films r resistances as		
17:30	Study of Impact Excitation Processes in Deep Violet nano-Boron Nitride Phosphors	Ultra-	M.P.30	☆
17:30	Time-resolved investigation of Al2O3 growth in MMA) thin films during sequential infiltration sy	P(S-r- nthesis	M.P.31	☆
17:30	Self assembly kinetics in PS-b-P(DMS-r-VMS) the role of solvent	thin film:	M.P.32	☆
17:30	Sequential infiltration synthesis is PS and PMN films: an in situ spectroscopic ellipsometry inve	IA thin stigation	M.P.33	☆
17:30	TGA-GC-MS CHARACTERIZATION OF MAGN POLYMERIC NANOPARTICLES FOR PHOSPHOPEPTIDE ENRICHMENT	NETIC	M.P.34	☆
17:30	Surface Engineering with Functional Random Copolymers for Nanolitographic Applications		M.P.35	公

17:30 Boron-Terminated Polystyrene as Potential Spin-on Dopant for Microelectronic Applications м.р.36 🟠

Organized nanostructures and nano-objects: fabrication, characterization and applications | EMRS

STADT AT			NILIM	
				ADD
17:30	From Gratting To to Gratting From		M.P.37	公
17:30	Ordering kinetic in two-dimensional hexagonal p cylinder-forming PS-b-PMMA block copolymer t dependence on the segregation strength	pattern of hin films:	M.P.38	☆
17:30	Controlled Silicon doping through self-limiting gr of phosphorus end-terminated polymers	rafting to	M.P.39	☆
17:30	Synthesis and characterization of NPs-Cu as a for cholesterol oxidation reaction	catalyst	M.P.40	☆
17:30	Bio Synthesis of core@shell ZnO@Ag from Gra Cambogia linn. and its Structural characterisatic XPS	acinia on using	M.P.41	☆
17:30	Self-assembled opal-based structures for broad radiative cooling	lband	M.P.42	슙
17:30	Nantotues and nanoribbons formed by liquid cry materials	ystalline	M.P.43	☆
17:30	Effect of surfactant on the growth of SnS thin fill photocatalytic applications	ms for	M.P.44	☆
17:30	Development of In doped PbS thin films: synthe characterization and application as potential abs low cost solar cells	esis, sorber for	M.P.45	☆
17:30	Gas sensing properties of iron oxide thin films p by spray pyrolysis technique	repared	M.P.46	☆
17:30	Study of structural, morphogical and optical pro ZnO-SnO2 mixed thin films	perties of	M.P.47	☆
17:30	Effect of precursor on physical properties of Mg photocatalytic application	O for	M.P.48	☆
17:30	Effect of multi-layer deposition on structural and properties of Cu2FeSnS4 thin films grown by Sp Pyrolysis For Photovoltaïc Application	l optical pray	M.P.49	☆
17:30	Ordered layers of bacteriophages for bacteria d	etection	M.P.50	☆
START AT	SUBJECT	View All	NUM.	ADD

09:00 Plenary Session (Main Hall)

START AT	SUBJECT	View All	NUM.	ADD
12:30	Lunch break			
	Nanophotonic : K. G. Yager			
14:00	Ultrathin metalenses for imaging with high harn generation processes	nonic	M.9.1	☆
14:30	Nanophotonic optomechanics: from quantum measurement to topological phononics		M.9.2	☆
15:00	Distributed Bragg reflectors with varying degree order and disorder	es of	M.9.3	☆
15:15	Modulation of coherent phonon emission prope optomechanical cavities by photothermal excitation	rties in tion	M.9.4	☆
15:30	Coffee Break			
	Nanofabrication and Characterizatior Verhagen	ns : T. Zentgra	f / E.	
16:00	Fabrication of 3D Optical Metamaterials by Cor Polymer Self-Assembly	ntrolled	M.10.1	☆
16:30	Scanning X-ray Nanodiffraction – from strain m in situ microscopy	apping to	M.10.2	☆
16:45	Quality control of nanolayered materials by XRI GIXRF	R and	M.10.3	☆
17:00	Reference-free GIXRF-XRR based characteriza nanolayers and nanostructures	ation of	M.10.4	☆
17:15	Sequential infiltration synthesis of block copolyr films: depth profiling study by grazing incidence fluorescence.	mers e X-ray	M.10.5	☆
18:00	Graduate Student Award & Reception 18:00-21	:00 (Main Hall)		
START AT	SUBJECT	View All	NUM.	ADD
	Functional Nanostructures : I. Gunke	!		
09:00	Effects of Polarity on the Formation and Physic Properties of Selective Area Grown ZnO Nanor	al ods	M.11.1	☆
09:15	Hierarchical, large scale and well-ordered ZnO structures grown by chemical routes : From urc pine-tree like structures	hins to	M.11.2	☆

START AT	SUBJECT	View All	NUM.	ADD
09:30	Tailoring the Green, Yellow and Red defect emiss bands in ZnO nanowires.	sion	M.11.3	☆
09:45	Large-area fabrication of low- and high-spatial-free laser-induced periodic surface structures on carb fibers	equency oon	M.11.4	☆
10:00	Extensive studies on growth control of TiO2 nand hydrothermal process	prods by	M.11.5	☆
10:15	A study on the structure and microstructure of ion exchanged titania nanotubes and their catalytic properties	n-	M.11.6	☆
10:30	Coffee Break			
	Organic and Inorganic Nanomaterials	: A. Beyer		
11:00	dynamical neuromorphic computing with electropolymerized organic electro chemical tran	sistors	M.12.1	☆
11:30	Hybrid Materials Based on Tunable Molecular Conjugates: the Covalent Approach for Charge Transfers and Transport within Solar-En		M.12.2	☆
11:45	White-emitting organometallo-silica nanoparticles sun-like light-emitting diodes	s for	M.12.3	☆
12:00	Unique Atomic Groove Epitaxy on Poly(tetrafluoroethylene)		M.12.4	☆
12:15	Influence of Ordering on Magneto-optical Activity Films of Organic Compounds	/ in Thin	M.12.5	☆
12:30	Lunch Break			
	Nanoporous Materials : S. Pecqueur			
14:00	Heat and Hypersound Transport in Phononic Cry Membranes	vstals	M.13.1	☆
14:30	Thermoplasmonics in core-shell Au@mesoporou films by environmental ellipsometry	us SiO2	M.13.3	☆
14:45	Hierarchical Porous Solvogel Monoliths - Synthe Application	sis and	M.13.4	☆
15:00	Effects of morphology on thermal and elastic pro of polycrystalline MoS2	perties	M.13.5	☆
15:15	Conclusions: G. Seguini, G. Ben-Assayag, P. W. Navarro-Urrios	Majewski, D.		

Symposium organizers

Daniel NAVARRO-URRIOS

Catalan Institute of Nanoscience and Nanotechnology

Campus Bellaterra - Edifici ICN2 08193 Bellaterra (Barcelona), Spain

Mail : daniel.navarro@icn2.cat

Gabriele SEGUINI

CNR-IMM, Laboratorio MDM Via Carlo Olivetti 2, 20864 Agrate Brianza, Italy

Mail : gabriele.seguini@mdm.imm.cnr.it

Gerard BEN-ASSAYAG

NanoMat Group, CEMES-CNRS 29 Rue J. Marvig 31055 Toulouse Cedex 4, France

Mail : benassay@cemes.fr

Pawel W. MAJEWSKI University of Warsaw Department of Chemistry, 1 Pasteur St. Warsaw, Poland

Mail : pmajewski@chem.uw.edu.pl

EUROPEAN MATERIALS RESEARCH SOCIETY