
FEATURES OF APPLICATION OF DATA

TRANSMISSION PROTOCOLS IN WIRELESS

NETWORKS OF SENSORS

Olexander Belej

Department of Computer-Aided Design

Lviv Polytechnic National University

Lviv, Ukraine
Oleksandr.I.Belei@lpnu.ua

Natalia Nestor

Department of Computer-Aided Design

Lviv Polytechnic National University

Lviv, Ukraine

natalia.nestor@gmail.com

Jan Sadeckii

Institute of Computer Science

Opole University of Technology

Opole, Poland

j.sadecki@po.opole.pl

Orest Polotai

Department of Information Security

Management

Lviv State University of Life Safety

Lviv, Ukraine
orest.polotaj@gmail.com

Abstract—This article discusses the vulnerabilities and

complexity of designing secure IoT-solutions, and then presents

proven approaches to protecting devices and gateways.

Specifically, security mechanisms such as device authentication

(including certificate-based authentication), device

authentication, and application a verification of identification

are described. The authors consider a protocol of message

queue telemetry transport for speech and sensor networks on

the Internet, its features, application variants, and

characteristic procedures. The principle of "publisher-

subscriber" is considered. An analysis of information elements

and messages is carried out. The urgency of the theme is due to

the rapid development of "publisher-subscriber" architecture,

for which the protocol is most characteristic.

Keywords—protocol, messages, protecting devices,

authentication, sensor networks, data

I. INTRODUCTION

The protocol of message queue telemetry transport
(MQTT), for the time being, has gained popularity and has
become a de facto standard in projects designed to create
solutions for the Internet of Things (IoT). By Internet, things
are understood as a set of various devices, sensors, actuators,
connected to the network by means of any available
communication channels, using different protocols of
interaction with each other and a single protocol of access -
IP to the global network Internet. In this case, the private
tasks of Machine-to-Machine (M2M) machine interactions
are already being effectively dealt with, including the level
of connection of these systems to the Internet, both for the
creation of industrial automation systems, for example, for
the construction of "smart home" systems. It is obvious that
critical systems require the presence of a local arbitrator or a
broker and devices that allow you to work out a solution to
the situation, regardless of the quality of the connection to
the Internet, as well as in the event of a complete break of
communication.

The interconnection of the hardware platform, messaging
protocols and their software implementation was the starting
point in the rapid progress of the development of modern
automation systems. Next, let's look at hardware solutions
and software components for the implementation of one of

the most successful protocols for messaging in technical
systems.

The Internet of Things (IoT) represents tremendous
opportunities for organizations and consumers, especially in
such areas as healthcare, warehousing, transportation, and
logistics. With the widespread use of the Internet of things,
developers face new challenges - they need to guarantee
sufficient security for IoT applications since these
applications manipulate a large amount of confidential data.
IoT solutions have already identified many security breaches,
so developers need to pay great attention to integrating
protection into IoT applications in the design and
implementation of such solutions.

Wireless Sensor Network (WSN) allows receiving data
for stand-alone systems, thanks to its small size, simple
layout and wireless transmission. In researching [1], key
factors were distinguished in the design of autonomous
systems based on WSN, the basic structure and scheme for
data transmission, focused on the collection and transmission
of data on the electric autonomous system, is proposed. In
the study [2] proposed a protocol for data transmission
between measuring sensors containing buffered data about
data packets to be transmitted to other sensors. Such transfer
of packets is carried out by means of an appropriate relay
selection algorithm that reduces power loss.

When transmitting data between sensors in the WSN, the
corresponding communication protocol is used through the
network protocols TCP/IP and RFC. The functionality of
such a system in [3] was tested in a network with four
sensors that measure the temperature around the heat source.
The NoPSM protocol can quickly and accurately design
interconnections between interfaces, as well as the
transmission of block data without touching the normal
network [4]. This protocol allows you to decide on the parity
of transmission with unlimited parameters that allow you to
evaluate the quality of any active connections after initiating
a new link and improving the bandwidth obtained from
simultaneous transfers.

The study [5] examines the use of wireless sensor
networks for the mechanical diagnosis of industrial
monitoring systems. The proposed algorithm uses a data

clustering protocol and each cluster's vertex is modeled by
several layers of data. The proposed protocol in [6] is used to
increase the density of the network based on the given
threshold values. It also allows each node in the WSN to
automatically identify the attributes of neighboring channels.
In [6], it is achieved by switching channels to achieve
maximum data transmission.

In [7], modification was proposed based on the
stabilization of sensor nodes, taking into account the energy
coefficient. The purpose of this modification is to calculate
distance parameters when determining the threshold value
that will be used to form new extended clusters [7]. The
problem of dynamic optimization of the encryption and data
transfer strategy is to minimize the deviation function in the
source representation of the system in accordance with the
limits of the stability of the data queue. It is formulated for
time-varying channels and sources. In [8] is proposed to
apply the Lyapunov method based on perturbation, which is
close to optimal, since it has clear and controlled boundaries
between the optimal rupture and the size of the queues.

WSN sensors are powered by batteries that are
commonly used at the device level. [9] proposed an extended
Green MAC protocol for the WSN server. The proposed
protocol allows remote sensing of data about network events
to be managed. Data transmission is carried out using the
proper power selection algorithm. The simulation results
presented compare the performance of an existing protocol
with the Green MAC Energy Management Protocol
developed.

Wireless Sensor Networks (WSNs) provide a new level
for collecting system data about various features of the
network with its small-sized features, simple layout and
wireless transmission. The paper [10] considers key factors
in designing WSN-based IoT devices, proposes a WSN-
based structure and data transfer scheme that targets the
transmission of electrical energy between devices and
defines the development of appropriate modules.

Energy efficiency is a major requirement for the Internet
of things, as it is expected that many sensors will be
completely autonomous and able to work for years without
replacing the battery. Data archiving is aimed at saving
energy by reducing the amount of data transmitted over the
network, but also affects the quality of the information
received. The paper [11] formulates the optimization
problem for developing a strategy for encoding and data
transmission. Here, optimal offline policies are proposed for
the distribution of energy parameters and transmission over a
network with a TDMA-based dynamic access scheme.

The paper [12] proposes an energy-efficient E-MAC
protocol, which is capable of generating any duty cycle
based on its load on the motion. The results of this
simulation confirm that E-MAC exceeds existing energy
efficiency protocols in terms of power consumption, network
bandwidth and network lifetime. The proposed energy saving
protocol allows you to generate an arbitrary boot loop based
on the traffic load of the sensor node, instead of switching to
sensor sleep mode to reduce power consumption.

Today, the Internet of Things covers a huge range of
industries, ranging from industry and ending with food. Data
from IoT can be transmitted to the network of general
communications and stored on a cloud server. The protocols
used to transfer data to the IoT now number about twenty

five. Among the existing Internet protocols, MQTT, CoAP
and HTTP/2 protocols are the most commonly used to
collect and transfer data between devices and the IoT server
infrastructure. However, each protocol has its own
peculiarities of functioning, which are manifested in the
emergency modes of the sensor network. For this reason, the
choice and use of any protocol has become a topical issue, as
the load on such networks increases over time. In the
proposed study, the features of the functioning of the MQTT,
CoAP and HTTP/2 protocols based on WSN were
considered and analyzed. Our research covers the use of
special protocols for various types of sensory devices and
networks.

II. CONSTRUCTION OF A WIRELESS TOUCH-BASED NETWORK

BASED ON THE MQTT-PROTOCOL

Any devices on the network may be exposed to
unauthorized access and external influence. An aggregate of
data from measuring devices may be of interest to hackers
and thieves, so attacks on IoT computer networks can
damage physical devices and services. The protection of
software applications of IoT networks is important both for
the reputation of the enterprise and for the well-being of the
users themselves of the products and services.

Clients and owners of IoT solutions understand the need
to protect such applications, so the development and
implementation of security tools create new opportunities for
implementing creative potential of developers. When
developing the majority of network applications, IoT owners
are constantly forced to seek a compromise between security
and ease of use.

Very often, IoT devices do not have the necessary
computing power and memory space to use sophisticated
cryptographic algorithms that make their protection more
secure than unauthorized access.

The IoT application consists of several basic levels:
devices and gateways; network software applications. All
components of IoT application at each level should have
adequate security measures to protect against various
vulnerabilities. The level of IoT software applications is most
open to cyber-attacks. This level consists of applications that
consist of web applications, cloud services, mobile
applications. These programs can be installed on or working
with IoT devices.

The security of the IoT application program is an
important and integral part of all stages of their life cycle. At
the stage of designing and developing the program part, it is
necessary to really evaluate the capabilities of the proposed
security and the requirements developed, which will ensure
the limited use and confidentiality of the data.

On Fig. 1 shows three levels of software application for
IoT based on the principles of IBM Watson IoT Platform. At
the network level and database levels, data transfer and
storage is realized using IBM Bluemix cloud technology.

The protocol of message queuing telemetry transport
(MQTT) itself specifies only a small number of protection
mechanisms, but all its common implementations support
modern security standards. The MQTT protocol does not
require a special approach to protect applications based on it,
leaving this task to the discretion of the software application
developer. This approach allows us to build a security system
and build requirements for it within the framework of the

program implementation of the IoT.

Fig. 1. The structure of the wireless sensor network as an IoT-application
based on the protocol of Message Queuing Telemetry Transport.

For implement of security MQTT is used the transport
layer security (TLS). This allows you to encrypt the data
transmitted, while maintaining their integrity. In most cases,
MQTT protocols require authorization on the server to
control access to databases and data systems.

In addition to the computer IoT model of the device, we
offer a client application that reflects the spam messages in
the wireless sensor network, which are transmitted between
devices.

In MQTT authentication is part of the protection level of
the transport level and the level of applications. At the
transport level, TLS guarantees client authentication on the
server by using client certificates and authenticating the
server to the client by validating the server certificate. At the
application level, the MQTT protocol provides
authentication by user name and password.

Developers can use multiple approaches to ensure proper
registration and identification of the device. The choice of
approach depends on the requirements to protect the solution
and the capabilities of the device to implement the
appropriate approach.

III. THE FORMATION OF A PROTECTION MECHANISM MQTT-

PROTOCOL FOR DATA TRANSMISSION BETWEEN SENSORS AND

CLOUD SERVICES

To implement the security of the network and application
levels, we authenticate the users in the MQTT protocol. At
the network level, TLS guarantees user authentication. The
use of user certificates and authentication on the server is
implemented through the verification of server certificates.
At the MQTT protocol level, we provide authentication by
entering a username and password.

To ensure IoT device registration in a software broker,
developers use several approaches that depend on the
security and features of the device.

The IoT device authenticate through the MQTT protocol,
enter the user names and password into the corresponding
fields of the CONNECT message. When connecting to the
MQTT software broker, the client must send a username and

password. In this case, the user name is encoded in the UTF-
8 format, and the password is a set of characters in binary
format. If network encryption is not used, then the MQTT
protocol does not encrypt the username or password and the
message is sent as plain text.

In case of successful access permission, the user can be
authenticated in the software broker using the password field
in the CONNECT message. After that, the user name
becomes an information line to determine the truth. In this
case, the maximum password size in the MQTT protocol is
65535 bytes and the length of the identifier cannot exceed
these limits.

The programing broker can use this token to perform
various checks, including the following: checking the token
signature; checking the validity of this token for its
expiration; check the authorization server for cancellation of
this token.

When an IoT device is connected to the MQTT protocol
software broker, checks may be used to identify and use
software applications. When identifying and using a software
broker, you also need to authorize the application. The user's
authorization can be made in several ways: the identifier
includes authorization of the user within the query to the
database; there may be an access intermediary to the
databases in which the user's identity is implemented.

IBM Watson IoT Platform software applications may
have user ID, access key, and application software
authenticator. The IoT application key identifier is generated
when registering an IoT device. They can be used when
connecting to the IBM Watson IoT Platform software broker.

The protection of the IoT device is implemented through
its validation in the register of trusted devices. This allows
the broker to "trust" the software application of the IoT
device, which sends management commands. Consider
below the various types of data protection to form a security
system that you can use to establish such "trust".

In addition to authentication mechanisms that are
provided in the MQTT protocol, additional protection and
device identification tools can be introduced for software
applications of the IoT device. We consider the approach to
implementing a one-time password authentication (OTPA)
user of the IoT device. OTPA can be a reliable means of
protecting your device from inappropriate use, eliminating
the risk of unauthorized access to it.

When OTPA starts exchanging data with the IoT
application, only users who have authenticated can start the
device after the device is started. Not all IoT devices may
have keyboard input, we can implement a simple property
switch to activate this protection scheme, depending on the
IoT device being used. If OTPA is enabled, the device sends
an OTPA request to the software broker of the IoT device.
This is done by the usual MQTT protocol messaging. The
corresponding flow is shown in Fig. 2.

The MQTT protocol software brokers used to realize the
capabilities of IoT devices in enterprise systems support the
certification of IoT devices that the broker can use as part of
the identification process. Such identification is taken into
account in software applications where security requirements
are very stringent and devices can initiate certificates.

We will use HiveMQ to demonstrate the two-way

authentication of the Secure Sockets Layer (SSL).

Fig. 2. Transferring data between cloud storage devices using the one-time

password authentication.

Only the standard MQTT protocol tools are used to
interface the device. Certificate identification provides a high
level of security for IoT software applications. Life-cycle
management of such certificates for several IoT devices is
quite expensive.

The IBM Watson IoT Platform service we reviewed does
not support the identification of user certificates. To use
TLS, the server must have an open and private key at a time.
When identifying users in TLS, the X509 certificate is
checked before establishing a secure connection.

Users can also have a unique pair of public and private
keys to implement identification in the TLS protocol. After
verifying the server certificate, the user sends his certificate
as part of the TLS identification procedure. If the user
certificate cannot be verified, then the server may cancel the
network data transfer procedure. This approach allows you to
identify the user before setting up a secure connection.

The implementation of custom certificates allows you to
verify the identity of the MQTT users of the protocol, to
authenticate them at the network level and to block invalid
users before sending the CONNECT message to the MQTT
protocol.

When using custom certificates, you can only install a
secure connection for trusted users. In this case, resources are
stored in a software broker, which is convenient when using
expensive identification tools in the MQTT protocol. User
identification is implemented through the TLS network
protocol to establish a network connection.

All messages in the MQTT protocol are published with
an identified theme and have an appropriate filter to include
wildcard characters. Most MQTT-based servers have
permission to publish and subscribe to a topic.

All IoT devices operate on the same network with a
definite set of devices. Custom data after identification
allows you to determine which device from the IBM Watson
IoT Platform service will be linked to topics with the built-in
network. This configuration prevents IoT devices from
functioning as other devices. The only way to operate as
another device is to get the account of the corresponding IoT
device.

To use our authoring tool on the MQTT server, the

protocol for the devices can use the OAuth protocol
environment. The OAuth 2.0 protocol allows you to separate
the authorization server from the resource server. When
using OAuth 2.0, the user passes its credentials to the
authentication server, which verifies the authenticity and
returns access rights with permission to access the server.
After verifying the access rights, it is used to connect to the
server with the MQTT protocol. The MQTT server checks
access rights and gives access to the server.

Fig. 3. The server of MQTT protocol checks access token.

An additional level of protection between software
applications of IoT devices is the verification of the program
ID. It is designed to prevent any fraudulent program from
sending commands to the device. This tool is used both for
protection on startup and for security of communication on
the network. In this case, the IoT stores a unique application
identifier and checks it when executing commands from the
IoT device application.

The IoT software application sends an invalid unique
identifier to the command and the device ignores this
command. When saving information in a software broker
unique identifier of the program IoT can be stored in it in
encrypted form. In this case, after each reboot, we do not
have to constantly ask for a unique ID.

If the program ID verification is activated and the unique
identifier store is activated, then the software application of
the IoT device tries to recover a unique identifier from the
encrypted file. If a device cannot load a unique application
ID, then it creates a request for a unique application ID.

Fig. 4. Checking the application of identification between the IoT

application and device.

The following figure shows the screen of a computer
model of the IoT device using a software application

identifier. The unique ID of the IoT device coming with the
command is checked for coincidence with the stored
application ID, and the corresponding command is executed
or ignored.

Fig. 5. The screen with the computer model of IoT device.

The software application of the IoT devices sends a
unique identifier to the device after receiving the
authorization request. After authorization, the IoT stores the
program ID in the memory and checks it in each command
from the IoT devices to determine the match.

Flexible multi-level protection and encryption options
allow users to secure data transfer and protect their
confidentiality from unauthorized access. In other variants,
users prefer the protection based on special encryption
through SSL in the absence of secure data sharing.

Software applications of the IoT devices can use a special
encryption to send messages over the network. The IBM
Watson IoT software broker considered by us does not
support special encryption, but this encryption is supported
by the software broker HiveMQ.

IV. DISCUSSION

In order to quantify the amount of data transmitted using
protocols, client-server transactions and the number of bytes
transmitted were analyzed. Table 1 shows the number of
bytes and packets transmitted per transaction for MQTT,
CoAP, and HTTP/2. A transaction begins when the customer
sends the data and ends when the server receives data or, in
some cases, when the customer receives the confirmation.

TABLE I. BYTES SENT IN A SINGLE CLIENT-SERVER TRANSACTION

Protocol MQTT

– QoS0

MQTT –

QoS1

MQTT –

QoS2

CoAP HTTP/2

Bytes per transaction 75 135 255 162 1149

Single Transaction

Packages

1 2 4 2 10

As shown in Table 1, the HTTP/2 transactions, although
using the HPACK header compression technology, still
includes significantly more bytes and packets. The MQTT
and CoAP protocols have a short header length. But CoAP at
the transport layer uses UDP, so it has a smaller packet size,
unlike MQTT. After encapsulation in TCP and UDP layer
headers, the MAC packet of these protocols can be
transmitted in one MAC frame, which is 80 bytes in size.

TABLE II. ATTITUDE OF USEFUL INFORMATION TO SERVICE

INFORMATION IN ONE MESSAGE

Protocol MQTT

– QoS0

MQTT –

QoS1

MQTT –

QoS2

CoAP HTTP/2

Useful information,

%

16,8 16,5 16,5 15,3 10,9

Service information,

%

83,2 85,5 85,5 84,7 89,1

The message is divided into two parts: useful information
and service. These parts affect the cost of channel life and
battery power. To improve efficiency, a reduction in service
information is required. Table 2 shows the ratio of service
information to users as a percentage when sending a single
message.

The basic level of trust "delivery maximum" (QoS0)
requires a separate channel with guaranteed delivery of data
with preservation order. The client or server executes the
command Pub (package) and forgets about it, no additional
checks, nothing at all. The level of trust at least "one time
delivery" (QoS1) requires confirmation of receiving a special
package by transferring each received package. The highest
level of trust is "just after delivery" (QoS2) with double
confirmation on both sides of the symmetrical Publish
packages.

The CoAP and MQTT protocols with Qos0 service fields
in the packet occupy a small amount, so a small amount of
energy is spent during a communication session. Internet
Things mainly transmit data over the air, in our case via
WiFi, so the problem of power supply will be important to
increase the life cycle of the device. For CoAP, you can set
the server to work in such a way that a request is created
when the data is updated, and the sensor sends new values.
Thus, it is possible to avoid constant data transfer and
inefficient energy costs. This option is suitable for devices
with limited resources.

Fig. 6. Delay in sending data from client to server.

In Fig. 5 shows the results of an experimental study of
the magnitude of the delay in the transmission of messages.

It can be seen that the CoAP protocol has a stable small

delay. CoAP uses the UDP transport layer protocol, which
allows you to quickly process data and transmits packets of
small length, which reduces redundancy in the transmission
channel. However, there are situations when the client-server
connection is not stable. Usually, this situation occurs when,
over a period of time - a few hours, the client sends data
from messages of different lengths. In Fig. 6 shows the
dependence of packet loss depending on their size.

The graph shows that with increasing message size, the
percentage of packet loss increases. It is worth noting that the
CoAP protocol is more likely to be lost than the MQTT and
HTTP/2 protocols, which is due to the use of the UDP
transport protocol, which does not guarantee the delivery of
messages. It is also worth considering that we consider the
MQTT protocol for 3 different types of quality (QoS0,
QoS1, QoS2). According to the quality types, we see that the
greater the degree of reliability we assign to a message
(QoS2), the lower the probability of loss.

Fig. 7. Graph the effect of message size on packet loss.

The CoAP and MQTT protocols allow us to connect the
gateway to the server. Currently, a large number of protocols
are used for these purposes, but these protocols are most
commonly used in the implementation of the IoT. Using
CoAP and MQTT protocols can be effective for sending
short messages. The HTTP/2 protocol is better to use for
WEB of Things (WoT).

V. CONCLUSION

To choose the approach to authenticating an IoT device,
you need to know clearly the solution and the array of data
with which this decision will be made. Therefore, we need to
use secure networks and gateways for the transmission of
confidential data. At the same time, authentication,
identification and secure communication are very important.
You can use one-time passwords to implement additional
protection and improve the physical security of your device.
Based on the software application's capabilities, you can use
the user authentication of the network to support external
vendors of authorization. Authorization for network access
must be strictly controlled to block unauthorized access to
subscriptions and databases. Therefore, in our opinion, you
should enter a limit on the size of network messages so that
the user could not block the program application itself IoT.

The article describes the most popular protocols of the
Internet of Things CoAP, MQTT, HTTP/2, which are used to
send information from the sensor to the cloud server. The
study revealed that the MQTT and CoAP protocols are
characterized by lower data transfer overhead (due to a small
amount of service traffic) and lower bandwidth than the
HTTP / 2 protocols. These protocols are well adapted for

low-power devices of the IoT based on microcontrollers. For
its work, the MQTT protocol does not require a permanent
connection between the client and the server, as well as the
CoAP protocol, which is not to say about HTTP/2.
Experimental results have shown that the effectiveness of the
considered protocols depends on various conditions of the
communication network. The most optimal is the MQTT
protocol, in which it is possible to set parameters responsible
for the reliability of message delivery. The HTTP/2 protocol
provided that the communication network works stably will
be more suitable for Web Things - information is delivered
quickly and can be visualized in mobile applications or on
personal computers. In this regard, at the present time, the
correct choice of protocols for various IoT helps to solve the
problem of saving resources, both energy consumption and
guaranteed delivery. This is especially true in connection
with the increase in the number of IoT devices.

REFERENCES

[1] V. Ababii, V. Sudacevschi, M. Podubnii, and I. Cojuhari, "Sensors
network based on mobile robots," 2014 International Conference on
Development and Application Systems (DAS), Suceava, 2014, pp.
70-72.

[2] L. M. Varalakshmi and M. Preethi, "Performance enhancement of
green MAC power saving protocol for corona-based wireless sensor
networks," 2016 10th International Conference on Intelligent Systems
and Control (ISCO), Coimbatore, 2016, pp. 1-6.

[3] V. Ababii, V. Sudacevschi, M. Podubnii, and I. Cojuhari, "Sensors
network based on mobile robots," 2014 International Conference on
Development and Application Systems (DAS), Suceava, 2014, pp.
70-72.

[4] H. Chen, Z. Zhang, L. Cui and C. Huang, "NoPSM: A Concurrent
MAC Protocol over Low-Data-Rate Low-Power Wireless Channel
without PRR-SINR Model," in IEEE Transactions on Mobile
Computing, vol. 16, no. 2, pp. 435-452, 1 Feb. 2017.

[5] Q. Chen, Y. Hu, J. Xia, Z. Chen and H. Tseng, "Data Fusion of
Wireless Sensor Network for Prognosis and Diagnosis of Mechanical
Systems," 2017 International Conference on Information,
Communication and Engineering (ICICE), Xiamen, 2017, pp. 331-
334.

[6] T. Hassan, S. Aslam, and J. W. Jang, "Fully Automated Multi-
Resolution Channels and Multithreaded Spectrum Allocation Protocol
for IoT Based Sensor Nets," in IEEE Access, vol. 6, pp. 22545-22556,
2018.

[7] G. Kaur, R. Bhatti and P. Kaur, "E-CHATSEP: Enhanced CHATSEP
for clustered heterogeneous wireless sensor networks," International
Conference on Computing, Communication & Automation, Noida,
2015, pp. 403-407.

[8] C. Tapparello, O. Simeone and M. Rossi, "Dynamic Compression-
Transmission for Energy-Harvesting Multihop Networks With
Correlated Sources," in IEEE/ACM Transactions on Networking, vol.
22, no. 6, pp. 1729-1741, 2014.

[9] L. M. Varalakshmi, M. Preethi. "Performance enhancement of green
MAC power saving protocol for corona-based wireless sensor
networks", 2016 10th International Conference on Intelligent Systems
and Control (ISCO), pp. 129-134, 2016.

[10] M. Qiu, P. Jiang, Q. Chen, Y. Jin. "Application study on prognostics
and health management of armored equipment based on wireless
sensor networks", 2014 Prognostics and System Health Management
Conference (PHM-2014 Hunan), pp. 216-121, 2014.

[11] C. Pielli, A. Biason, A. Zanella, M. Zorzi. "Joint Optimization of
Energy Efficiency and Data Compression in TDMA-Based Medium
Access Control for the IoT", 2016 IEEE Globecom Workshops (GC
Wkshps), pp. 89-96, 2016.

[12] C.-М. Chao, C.-H. Jiang. "Energy Efficient Protocol for Corona-
Based Wireless Sensor Network", 2018 19th IEEE/ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pp. 141-148, 2018.

