Please use this identifier to cite or link to this item:
https://sci.ldubgd.edu.ua/jspui/handle/123456789/13586
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kagitin, O | - |
dc.contributor.author | Veselivskyi, R | - |
dc.contributor.author | Havrys, A | - |
dc.contributor.author | Ballo, Y | - |
dc.contributor.author | Yakovchuk, R | - |
dc.contributor.author | Kovalyshyn, B | - |
dc.date.accessioned | 2024-05-20T10:37:49Z | - |
dc.date.available | 2024-05-20T10:37:49Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | 1. Pro nadannia budivelnoi produktsiyi na rynku: Zakon Ukrainy vid 02.09.2020 No. 850-IX. Vidomosti Verkhovnoi Rady (VVR), No. 14, st. 119. Available at: https://zakon.rada.gov.ua/laws/show/850-20#Text 2. Ballo, Y., Nizhnyk, V., Veselivskyy, R., Kagitin, O. (2023). Influence of the facade slope on fire propagation processes on higher floors. Eastern-European Journal of Enterprise Technologies, 5 (10 (125)), 43–52. https://doi.org/10.15587/1729-4061.2023.288174 3. Ballo, Y. V., Yakovchuk, R. S., Nizhnуk, V. V., Kahitin, O. I. (2022). Analysis and systematization of types of facade systems of buildings as a prerequisite for improvement of fire-fighting measures. Fire Safety, 40, 5–15. https://doi.org/10.32447/20786662.40.2022.01 4. Ballo, Y. (2023). Influence of the slope of the facade on the processes of fire spread through the facades of buildings. Scientific Bulletin: Сivil Protection and Fire Safety, 1 (15), 32–40. https://doi.org/10.33269/nvcz.2023.1(15).32-40 5. Mizuno, T., Kawagoe, K. (1986). Burning behaviour of upholstered chairs. Part 3. Flame and plume characteristics in fire test. Fire Science and Technology, 6 (1/2), 29–37. https://doi.org/10.3210/fst.6.29 6. Yakovchuk, R., Ballo, Ya., Kuzyk, A., Kagitin, O., Kovalchuk, V. (2021). FDS modeling of the fire-preventing eaves effectiveness to prevent the fire spreading on facade of high-rise buildings. Bulletin of Lviv State University of Life Safety, 23, 39–45. https://doi.org/ 10.32447/20784643.23.2021.06 7. Hietaniemi, J., Hostikka, S., Vaari, J. (2004). FDS simulation of fire spread – comparison of model results with experimental data. VTT. Available at: https://publications.vtt.fi/pdf/workingpapers/2004/W4.pdf 8. Yakovchuk, R., Kuzyk, A., Skorobagatko, T., Yemelyanenko, S., Borys, O., Dobrostan, O. (2020). Computer simulation of fire test parameters fa ade heat insulating system for fire spread in fire dynamics simulator (FDS). NEWS of National Academy of Sciences of the Republic of Kazakhstan, 4 (442), 35–44. https://doi.org/10.32014/2020.2518-170x.82 9. Jansson, R., Anderson, J. (2012). Experimental and Numerical Investigation of Fire Dynamics in a Facade Test. Rig. In Proceedings of Fire Computer Modeling. Santander. Available at: https://www.researchgate.net/publication/258769012_EXPERIMENTAL_ AND_NUMERICAL_INVESTIGATION_OF_FIRE_DYNAMICS_IN_A_FACADE_TEST_RIG 10. Anderson, J., Jansson, R. (2013). Fire dynamics in fa ade fire tests: measurement and modelling. Conference: Interflam 2013. http:// dx.doi.org/10.13140/RG.2.1.3025.9684 11. Anderson, J., Jansson, R. (2013). Fa ade fire tests – measurements and modeling. MATEC Web of Conferences, 9, 02003. https:// doi.org/10.1051/matecconf/20130902003 12. Anderson, J., Bostr m, L., Jansson, R., Milovanovi , B. (2016). Fire dynamics in fa ade fire tests, Measurement, modeling and repeatability. Applications of Structural Fire Engineering. https://doi.org/10.14311/asfe.2015.059 13. SP Fire 105. External wall assemblies and facade claddings. Reaction to fire (1994). SP Technical Research Institute of Sweden, 16. Available at: https://assets.grenfelltowerinquiry.org.uk/INQ00014964_SP%20FIRE%20105%E2%80%94Method%20for%20fire %20testing%20of%20fa%C3%A7ade%20materials%2C%20Dnr%20171%E2%80%9079%E2%80%90360%20Department%20of% 20Fire%20Technology%2C%20Swedish%20National%20Testing%20and%20Research%20Institute.pdf 14. BS 8414-1:2015. Fire performance of external cladding systems. Test method for non-loadbearing external cladding systems applied to the masonry face of a building. 15. Dr an, V., Schillinger, R., Auguin, G. (2016). Fire exposed facades: Numerical modelling of the LEPIR2 testing facility. MATEC Web of Conferences, 46, 03001. https://doi.org/10.1051/matecconf/20164603001 16. Ballo, Ya., Yakovchuk, R., Nizhnyk, V., Sizikov, O., Kuzyk, A. (2021). Investigation of design parameters facade fire-fighting eaves for prevent the spread of fires on facade structures of high-rise buildings. Fire Safety, 37, 16–23. https://doi.org/10.32447/20786662. 37.2020.03 17. Morgado, H. J. L., Rodrigues, J. P. C. (2015). Balcony Effect on the External Fire Spread into Upper Floors. Journal of Structural Fire Engineering, 6 (4), 255–274. https://doi.org/10.1260/2040-2317.6.4.255 18. Morgado, H. J., Rodrigues, J. P., La m, L. (2015). Experimental and numerical study of balcony effect in external fire spread into upper floors. Applications of Structural Fire Engineering. oli , A., Pe ur, I. B. (2020). Influence of Horizontal and Vertical Barriers on Fire Development for Ventilated Fa ades. Fire Technology, 56 (4), 1725–1754. https://doi.org/10.1007/s10694-020-00950-w 20. Nilsson, M., Husted, B., Mossberg, A., Anderson, J., McNamee, R. J. (2018). A numerical comparison of protective measures against external fire spread. Fire and Materials, 42 (5), 493–507. https://doi.org/10.1002/fam.2527 21. Nilsson, M. (2016). The impact of horizontal projections on external fire spread – a numerical comparative study. https://doi.org/ 10.13140/RG.2.2.27432.57600 22. Rukavina, M. J., Carevi , M., Pe ur, I. B. (2017). Fire protection of fa ades. University of Zagreb. Available at: https://www.grad. unizg.hr/images/50014277/Fire%20Protection%20of%20Facades.pdf 23. Oleszkiewicz, I. (1989). Heat transfer from a window fire plume to a building facade. ASME HTD – Collected Papers in Heat Transfer, 123, 163–170. Available at: https://nrc-publications.canada.ca/eng/view/ft/?id=f701b2ee-3980-47f8-9cfa-e23e4264b212 24. Oleszkiewicz, I. (1991). Vertical separation of windows using spandrel walls and horizontal projections. Fire Technology, 27 (4), 334–340. https://doi.org/10.1007/bf01039884 25. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Vol. 1. National Institute of Standard and Technology. 26. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology. | en_US |
dc.identifier.uri | https://sci.ldubgd.edu.ua/jspui/handle/123456789/13586 | - |
dc.language.iso | en | en_US |
dc.publisher | Eastern-European Journal of Enterprise Technologies, 4 (1 (130)), 6–16. https://doi.org/10.15587/1729- 4061.2024.303640 | en_US |
dc.subject | FDS modeling | en_US |
dc.subject | thermal insulation | en_US |
dc.subject | fire-proof eaves | en_US |
dc.subject | fire propagation | en_US |
dc.title | Determining the influence of faсade parameters and the width of a fire-proof eaves on preventing the spread of fire through external vertical structures of buildings | en_US |
dc.type | Article | en_US |
Appears in Collections: | 2024 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
303640-Article Text-702805-1-10-20240516.pdf | 3.21 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.